A New Edge Perturbation Mechanism for Privacy-Preserving Data Collection in IOT  

在线阅读下载全文

作  者:CHEN Qiuling YE Ayong ZHANG Qiang HUANG Chuan 

机构地区:[1]College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350007,China [2]Fujian Provincial Key Laboratory of Network Security and Cryptology,Fuzhou 350007,China

出  处:《Chinese Journal of Electronics》2023年第3期603-612,共10页电子学报(英文版)

基  金:supported by the National Natural Science Foundation of China(61972096,61872090,61771140,61872088).

摘  要:A growing amount of data containing the sensitive information of users is being collected by emerging smart connected devices to the center server in Internet of things(IoT)era,which raises serious privacy concerns for millions of users.However,existing perturbation methods are not effective because of increased disclosure risk and reduced data utility,especially for small data sets.To overcome this issue,we propose a new edge perturbation mechanism based on the concept of global sensitivity to protect the sensitive information in IoT data collection.The edge server is used to mask users’sensitive data,which can not only avoid the data leakage caused by centralized perturbation,but also achieve better data utility than local perturbation.In addition,we present a global noise generation algorithm based on edge perturbation.Each edge server utilizes the global noise generated by the center server to perturb users’sensitive data.It can minimize the disclosure risk while ensuring that the results of commonly performed statistical analyses are identical and equal for both the raw and the perturbed data.Finally,theoretical and experimental evaluations indicate that the proposed mechanism is private and accurate for small data sets.

关 键 词:Internet of things Edge perturbation Data privacy Sensitive attribute Statistical query 

分 类 号:TN929.5[电子电信—通信与信息系统] TP391.44[电子电信—信息与通信工程] TP309[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象