检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:路长[1,2] 苏振国 陈硕 孟琪 班成伟 段征 刘金刚 余明高[3] LU Chang;SU Zhen-guo;CHEN Shuo;MENG Qi;BAN Cheng-wei;DUAN Zheng;LIU Jin-gang;YU Ming-gao(State Collaborative Innovation Center of Coal Work Safety and Clean-High Efficiency Utilization,Henan Polytechnic University,Jiaozuo 454003,Henan,China;State Key Laboratory Cultivation Bases for Gas Geology and Gas Control,Henan Polytechnic University,Jiaozuo 454003,Henan,China;State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing 400044,China)
机构地区:[1]河南理工大学煤炭安全生产与清洁高效利用省部共建协同创新中心,河南焦作454003 [2]河南理工大学瓦斯地质与瓦斯治理国家重点实验室培育基地,河南焦作454003 [3]重庆大学煤矿灾害动力学与控制国家重点实验室,重庆400044
出 处:《安全与环境学报》2023年第4期1115-1123,共9页Journal of Safety and Environment
基 金:国家自然科学基金项目(51974107,51774059)。
摘 要:为探究全氟己酮及其与CO_(2)、N_(2)协同下的抑爆能力,通过改变全氟己酮用量和CO_(2)、N_(2)的压力来观测其对甲烷爆炸传播特性的影响。结果表明:在试验条件下,单喷CO_(2)和N_(2)不能实现对甲烷的完全抑爆;而单喷全氟己酮能实现对甲烷的完全抑爆;全氟己酮与CO_(2)或N2混合喷出有利于全氟己酮完全汽化、提升其抑爆能力;与N_(2)混合,抑爆所需的全氟己酮最小量由23 mL下降到17 mL,与CO_(2)混合,阻爆所需全氟己酮最小量从23 mL下降到5 mL,全氟己酮与CO_(2)混合使用的抑爆能力强于全氟己酮与N2混合使用的抑爆能力。全氟己酮/CO_(2)的协同抑制机理在于全氟己酮产生的自由基F会优先替代氧气产生的O参与基元反应,CO_(2)作为第3体参与反应会优先阻断OH的放热反应,二者具有良好的协同互补关系,从而更好地抑制和阻断甲烷/空气链式反应。To investigate the suppression ability of C_(6)F_(12)O and inert gas, the effects of C_(6)F_(12)O dosage and CO_(2), N_(2) pressure on the flame propagation of gas explosion are observed. The results show that the methane explosion can not be completely suppressed by the sole spray of CO_(2) or N_(2) under experimental conditions. By the sole spray of C_(6)F_(12)O, the methane explosion can be completely suppressed and the flame propagation can be prevented. The suppression ability of C_(6)F_(12)O is stronger than that of CO_(2) and N_(2). The mixing spray of C_(6)F_(12)O/CO_(2) or C_(6)F_(12)O/N_(2) is conducive to C_(6)F_(12)O vaporizing completely and improving its suppression ability. In mixing spray of C_(6)F_(12)O/CO_(2) or C_(6)F_(12)O/N_(2), the flow speed becomes faster with the increase of CO_(2) or N_(2) pressure, which will accelerate the deformation, fragmentation and atomization of C_(6)F_(12)O droplets in the flow field. It is conducive to the rapid vaporization of C_(6)F_(12)O and rapid absorption of a large amount of heat. The explosion is suppressed by gas state C_(6)F_(12)O more efficiently than by mist state C_(6)F_(12)O in experiments. When mixed with N_(2), the minimum amount of C_(6)F_(12)O required to prevent the explosion decreased from 23mL to 17mL, with a maximum decrease of 26.1%. When mixed with CO_(2), the minimum amount of C_(6)F_(12)O required to prevent the explosion decreases from 23mL to 5mL, with a maximum decrease of 78.3%. The mixing spray of C_(6)F_(12)O/CO_(2) shows a stronger inhibition ability than that of C_(6)F_(12)O/N_(2). The physical inhibition mechanism of C_(6)F_(12)O/CO_(2) includes the dilution effect and the heat absorption by vaporization. The chemical inhibition mechanism of C_(6)F_(12)O is that the free radical F produced by C_(6)F_(12)O will react with the fuel radical before the radical O is produced by oxygen. The oxidation chain reaction is inhibited. CO_(2), as a third body, preferentially blocks the exothermic reaction of radical OH. Therefore, C_(6)F_(
关 键 词:安全工程 甲烷 全氟己酮 二氧化碳 阻爆 抑爆机理
分 类 号:X932[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7