基于预测与分解策略的大规模炼油过程生产调度算法  

Production scheduling algorithm for large-scale refining process based on prediction and decomposition strategy

在线阅读下载全文

作  者:陈远东 丁进良 CHEN Yuan-dong;DING Jin-liang(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China)

机构地区:[1]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819

出  处:《控制理论与应用》2023年第5期833-846,共14页Control Theory & Applications

基  金:国家重点研发计划项目(2018YFB1701104);国家自然科学基金项目(61988101);辽宁省兴辽计划项目(XLYC1808001);辽宁省科技项目(2020JH2/10500001,2020JH1/10100008)资助。

摘  要:炼油生产调度为混合整数规划问题,随着规模的增大,其求解时间随问题规模呈指数增加,使得大规模长周期炼油生产调度问题难以在合理的时间内求解.针对该问题,本文提出了一种基于生产任务预测与分解策略的炼油生产调度算法,该算法能在短时间内获得大规模调度问题的满意解.所提算法将原问题沿时间轴分解为若干个调度时长相同的单时间段子问题,并设计了基于深度学习的单时间段生产任务(组分油产量)预测模型,用于协调子问题的求解.其中,生产任务预测模型通过易于获得的小规模问题的全局最优调度方案训练得到.最后,通过与商业求解器Cplex以及现有算法的对比,实验结果表明了所提算法的有效性.Refinery production scheduling is a mixed integer programming problem.As the scale increases,its solution time increases exponentially with the problem size,making it difficult to solve large-scale long-period oil refining production scheduling problems in a reasonable time.Aiming at this problem,this paper proposes a refinery production scheduling algorithm based on production task prediction and decomposition strategy,which can obtain a satisfactory solution to large-scale scheduling problems in a short time.The proposed algorithm decomposes the original problem into several single-period sub-problems with the same duration along the time axis,and designs a single-period production task prediction model based on deep learning to coordinate the solution of the sub-problems.The production task prediction model is trained through the data from small-scale problems,of which the global optimal solution is easy to obtain.Finally,by comparing with the commercial solver Cplex and existing algorithms,the experimental results show the effectiveness of the proposed algorithm.

关 键 词:分解算法 深度学习 大规模优化 炼油生产 调度 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TE624[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象