检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王名茂 陈向阳[1,2] 叶子[1] 肖利芳 郑戎[3] WANG Mingmao;CHEN Xiangyang;YE Zi;XIAO Lifang;ZHENG Rong(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Airports Group Air Logistics Company,Wuhan 430302,China)
机构地区:[1]武汉工程大学计算机科学与工程学院,武汉430205 [2]武汉工程大学智能机器人湖北省重点实验室,武汉430205 [3]湖北机场集团航空物流有限公司,武汉430302
出 处:《计算机工程》2023年第6期154-161,共8页Computer Engineering
基 金:湖北省教育厅科研计划面上项目(B2021083);武汉工程大学教学研究项目(X2015035,X2021029);武汉工程大学综合改革建设项目(2016C);武汉工程大学教育创新基金(CX2022319)。
摘 要:基于深度学习的篡改检测网络通常忽视了全局通道特征间的差异性且未有效利用全局相关性,造成篡改检测结果误检率和漏检率较高。为解决该问题,构建一种新的篡改检测网络。利用双残差网络和限制卷积层构建特征提取主干网络层,提取待检测目标的双视图多尺度特征。建立全局信息增强模块,引入非局部注意力计算方式,计算各尺度通道的低维全局性相关程度,并将其作为增强参数对全局特征进行区分性增强操作。设计新的边界监督方式,通过对预测结果提取边界信息创建边界掩码图像以计算边界辅助损失,利用反向学习以引导全局特征集中于篡改区域,实现监督性篡改检测。在CASIA、COVER、NIST16、Columbia数据集上的实验结果表明,该网络能有效降低篡改检测结果的误检率和漏检率,像素级F1分数相比于性能最优的同类MVSS-Net平均提升了2.3个百分点。Tamper detection networks based on deep learning often fail to effectively utilize global correlations and distinguish between global channel features,leading to high fasle and missed detection rates.To address this issue,a new tamper detection network is proposed.The feature extraction backbone network is constructed using a dual residual network and restricted convolutional layer to extract dual-view multi-scale features from the target of detection.A global information enhancement module is designed to utilize a non-local attention calculation method to obtain the low-dimensional global correlation degree of each scale channel.This correlation degree is then used as an enhancement parameter to perform a discriminative enhancement operation on the global features.Furthermore,a new boundary-supervised approach is introduced to generate boundary mask images by extracting boundary information from prediction results to calculate boundary-assisted loss.This approach utilizes backward learning to guide global features toward tampered regions for tamper detection.Experimental results on the CASIA,COVER,NIST16,and Columbia datasets demonstrate that this network effectively reduces false and missed detection rates,improving the pixel-level F1 score by an average of 2.3 percentage points compared to Multi-View multi-Scale Supervised Network(MVSS-Net)which is best-performing in the similar networks.
关 键 词:全局相关性 双残差网络 非局部注意力计算 区分性增强 边界监督
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28