检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王新迪 杨夙 张思源 罗午阳 李杰[2] 刘辉[2] WANG Xindi;YANG Su;ZHANG Siyuan;LUO Wuyang;LI Jie;LIU Hui(Shanghai Key Laboratory of Intelligent Information Processing,School of Computer Science,Fudan University,Shanghai 200438,China;State Grid Beijing Electric Power Company,Beijing 100031,China)
机构地区:[1]复旦大学计算机科学技术学院上海市智能信息处理重点实验室,上海200438 [2]国网北京市电力公司,北京100031
出 处:《计算机工程》2023年第6期242-249,共8页Computer Engineering
基 金:国家电网有限公司科技项目(5500—202011091A—0—0—00)。
摘 要:火灾事故在全世界范围内普遍存在且频繁发生。然而,针对城市火灾的风险预测研究尚在起步中。为此,提出一种针对城市火灾风险的预测模型HISS。基于多重分形维度从卫星图像中提取视觉特征,并将卫星图像的视觉特征与从历史火灾数据、气象数据、出租车流动记录、区域用电量数据和POI数据中提取的非视觉特征相融合,构成静态特征。基于静态特征对XGBoost进行预训练,并设计一种特征嵌入模块,将XGBoost的预测结果作为基准值嵌入到包含时序关系的动态特征中,通过Transformer学习火灾的时间波动模式。采用动态加权模块实现XGBoost和Transformer在模型层面的融合,进一步提升模型的性能。实验结果表明,HISS模型的确定系数R2达到了72.56%,与长短期记忆网络和门控循环单元相比R2分别提升4.25和3.92个百分点,与Lasso、随机森林和梯度提升决策树相比R2分别提升10.88、5.62和3.93个百分点,具有较优的预测性能。Fires are a ubiquitous and frequent occurrence all over the world.However,urban fire risk prediction is still in its infancy.Therefore,this study proposes a prediction model HISS for urban fire risk.Visual features from satellite images are extracted based on multi-fractal dimensions and fused with non-visual features extracted from historical data on points of interest such as fire,meteorology,inflow and outflow of cabs,and electricity usage to form static features.The static features are pre-trained using XGBoost,and a feature embedding module is proposed.The prediction results of XGBoost are embedded as a benchmark into the dynamic features with temporal relations,whereby the fluctuation patterns of fire are learned through a transformer.A dynamic weighting module is proposed to fuse XGBoost and the transformer at the model level to further improve model performance.The experimental results demonstrate that the determination coefficient R2 of the proposed model reached 72.56%,and the performance of the model compared with the Long Short-Term Memory(LSTM)time series model and Gated Recurrent Unit(GRU)improved by 4.25 and 3.92 percentage points,respectively.Compared with Lasso,Random Forest(RF),and Gradient Boosting Decision Tree(GBDT),the performance of the proposed model is improved by 10.88,5.62,and 3.93 percentage points,respectively.The HISS model has excellent predictive performance.
关 键 词:时空大数据 火灾风险预测 卫星图像 特征嵌入 动态加权
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.50