检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张家涛 褚琼楠 代煜 章海兵 姚国年 苏洪明 ZHANG Jiatao;CHU Qiongnan;DAI Yu;ZHANG Haibing;YAO Guonian;SU Hongming(Zhengzhou Metro Group Co.,Ltd.,Zhengzhou 450000,China;Hefei University of Science and Technology Intelligent Robot Technology Co.,Ltd.,Hefei 230000,China)
机构地区:[1]郑州地铁集团有限公司,河南郑州450000 [2]合肥科大智能机器人技术有限公司,安徽合肥230000
出 处:《电工技术》2023年第8期104-106,109,共4页Electric Engineering
摘 要:变压器绕组热点温度过高会导致绝缘老化速度变快,剩余寿命变短。为此提出了一种基于时序性外因非线性自回归(NARX)的自适应神经网络模型以获得更精准的绕组热点温度预测数据。首先,确定影响变压器绕组温度的外部特征因子种类;然后,对变压器绕组热点数据和其他数据进行预处理;最后,将处理后的数据输入时序NARX自适应神经网络模型进行训练和调参,完成模型的构建。经实例验证,提出的外因NARX自适应神经网络绕组热点温度预测模型能对不同类型变压器数据进行特定的预处理,并且与支持向量机回归、回归树、高斯核回归方法相比,预测误差更小,在提高精度上具有更大优势。High winding hot spot temperature of transformer will lead to faster insulation aging and shorter residual life.An adaptive neural network model based on time-series exogenous nonlinear autoregression(NARX)is proposed to obtain more accurate winding hot spot temperature prediction data.Firstly,the types of external characteristic factors that affect the winding temperature of the transformer are determined.Then,the transformer winding hot spot data and other data are preprocessed.Finally,the processed data is input into the time-series NARX adaptive neural network model for training and parameter tuning,and the model construction is completed.After case verification,the proposed external-cause NARX adaptive neural network winding hot spot temperature prediction model can perform specific preprocessing on different types of transformer data.At the same time,compared with the support vector machine regression,decision tree regression and Gaussian kernel regression methods,the prediction error of this method is smaller,and it has greater advantages in improving accuracy.
关 键 词:NARX自适应神经网络 数据预处理 绕组热点温度 深度学习
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.195.167