Smart and collaborative industrial IoT: A federated learning and data space approach  被引量:1

在线阅读下载全文

作  者:Bahar Farahani Amin Karimi Monsefi 

机构地区:[1]Cyberspace Research Institute,Shahid Beheshti University,Tehran,1983969411,Iran [2]Department of Computer Science and Engineering,Ohio State University,Columbus,OH,43210,USA

出  处:《Digital Communications and Networks》2023年第2期436-447,共12页数字通信与网络(英文版)

摘  要:Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this paradigm shift,particularly in the field of smart factories and production,is still in its infancy,suffering from various issues,such as the lack of high-quality data,data with high-class imbalance,or poor diversity leading to inaccurate AI models.However,data is severely fragmented across different silos owned by several parties for a range of reasons,such as compliance and legal concerns,preventing discovery and insight-driven IIoT innovation.Notably,valuable and even vital information often remains unutilized as the rise and adoption of AI and IoT in parallel with the concerns and challenges associated with privacy and security.This adversely influences interand intra-organization collaborative use of IIoT data.To tackle these challenges,this article leverages emerging multi-party technologies,privacy-enhancing techniques(e.g.,Federated Learning),and AI approaches to present a holistic,decentralized architecture to form a foundation and cradle for a cross-company collaboration platform and a federated data space to tackle the creeping fragmented data landscape.Moreover,to evaluate the efficiency of the proposed reference model,a collaborative predictive diagnostics and maintenance case study is mapped to an edge-enabled IIoT architecture.Experimental results show the potential advantages of using the proposed approach for multi-party applications accelerating sovereign data sharing through Findable,Accessible,Interoperable,and Reusable(FAIR)principles.

关 键 词:Industry 4.0 Industrial internet of things(IIoT) Artificial intelligence(AI) Predictive maintenance(PdM) Condition monitoring(CM) Federated learning(FL) Privacy preservinig machine learning(PPML) Edge computing Fog computing Cloud computing 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象