检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dongchen Huang Junde Liu Tian Qian Yi-Feng Yang
机构地区:[1]Beijing National Laboratoryfor Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China [3]Songshan Lake Materials Laboratory,Dongguan 523808,China
出 处:《Science China(Physics,Mechanics & Astronomy)》2023年第6期191-199,共9页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11974397,U1832202,and 11888101);the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB33000000;XDB28000000);the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0102);the Synergetic Extreme Condition User Facility(SECUF)。
摘 要:De-noising plays a crucial role in the post-processing of spectra.Machine learning-based methods show good performance in extracting intrinsic information from noisy data,but often require a high-quality training set that is typically inaccessible in real experimental measurements.Here,using spectra in angle-resolved photoemission spectroscopy(ARPES)as an example,we develop a de-noising method for extracting intrinsic spectral information without the need for a training set.This is possible as our method leverages the self-correlation information of the spectra themselves.It preserves the intrinsic energy band features and thus facilitates further analysis and processing.Moreover,since our method is not limited by specific properties of the training set compared with previous ones,it may well be extended to other fields and application scenarios where obtaining high-quality multidimensional training data is challenging.
关 键 词:DE-NOISING deep learning spectroscopic data
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7