科创金融场景下的企业征信  被引量:3

Enterprise Credit Reporting in the Sci-tech Innovation Finance Scenario

在线阅读下载全文

作  者:宋鑫 杜菁 薛永营 Song Xin;Du Jing;Xue Yongying(Shenzhen Weizhong Credit Technology Co.,Ltd,Shenzhen 518000,Guangdong,China)

机构地区:[1]深圳微众信用科技股份有限公司,广东深圳518000

出  处:《征信》2023年第5期18-23,共6页Credit Reference

摘  要:科技创新型企业由于信息稀缺、投融资双方信息不对称、抵押物不足等原因,融资难融资贵问题尤为突出。提出建立“三位一体”的企业征信画像,通过采集科技创新型企业特有税收科目信息、知识产权数据,同时结合企业经营其他维度,全方位量化科技型企业的科技含量、核心研发能力和经营风险。通过基于数据的科创类企业信贷风险实证研究,探讨科创金融场景下企业征信的模式和思路。利用真实数据搭建的基于税务、知识产权、工商等数据的科创类企业信用风险模型KS等技术指标较好,重要变量维度与行业理解差异度较小,体现出数据驱动、模型驱动的智能决策模式在科创金融场景应用空间广阔。The problem of difficulty and high cost of financing is particularly prominent for science and technology innovation enterprises due to the scarcity of information,information asymmetry between investors and financiers,and insufficient collateral,etc.This article argues that we should establish a“trinity”credit portrait for enterprises,which collects information on tax accounts and intellectual property data specific to science and technology innovation enterprises,and combines with other dimensions of enterprise operation to quantify the technology content,core RD capability and operation risks of science and technology enterprises.It explores the mode and ideas of enterprise credit reporting in the sci-tech innovation finance scenario through the data-based empirical study of credit risks of science and technology innovation enterprises.The technical indicators such as KS of credit risk model of science and technology innovation enterprises based on real data,such as tax,intellectual property,industry and commerce data are much better in that the important variable dimensions are less different from the industry understanding and it reflects that the data-driven and model-driven intelligent decision-making model has wide application space in the sci-tech innovation finance scenario.

关 键 词:企业征信 科创金融 量化模型 替代数据 信用风险 

分 类 号:F832.1[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象