SSA降噪算法在超声检测中的应用  被引量:2

Application of SSA noise reduction algorithm in ultrasonic testing

在线阅读下载全文

作  者:程树云 陆铭慧[1] 刘元钰 刘勋丰[1] 朱颖[1] CHENG Shuyun;LU Minghui;LIU Yuanyu;LIU Xunfeng;ZHU Ying(Key Laboratory of Nondestructive Testing of Ministry of Education,Nanchang Hangkong University,Nanchang 330063,China)

机构地区:[1]南昌航空大学无损检测技术教育部重点实验室,南昌330063

出  处:《无损检测》2023年第4期33-38,81,共7页Nondestructive Testing

基  金:国防技术基础项目(JSZL2018401C001)。

摘  要:超声检测信号中往往会携带部分噪声信号,以材料晶界散射噪声和系统噪声居多。针对一些传统超声信号降噪方法的局限性和不足,将奇异谱分析(SSA)算法引入到超声信号的降噪中。该方法源于主成分分析法(PCA),根据奇异谱中信号主成分和噪声成分的奇异值差异提取出信号主成分,再对提取出的若干个信号主成分进行信号重构,实现降噪目的。最后对比了SSA方法与小波阈值去噪、EMD(经验模态分解)滤波和稀疏分解重构等传统降噪方法的降噪效果。试验结果表明,SSA算法对不同信噪比的含噪信号均有较好的降噪效果,显著优于其他传统的降噪方法,且无需更多的先验信息。Some noise signals are often carried in ultrasonic detection signals,and the most of them are the scattering noise at material grain boundary and system noise.In view of the limitations or shortcomings of some traditional methods of ultrasonic signal noise reduction,this paper introduces the singular spectrum analysis(SSA)algorithm to the noise reduction of ultrasonic signals.The method originates from principal component analysis(PCA).The main component of signal was extracted according to the difference of singular value between the main component and noise component in singular spectrum,and then several extracted signal principal components were reconstructed to realize the purpose of noise reduction.The noise reduction effect of SSA algorithm is compared with traditional methods such as wavelet threshold denoising,EMD filtering and sparse decomposition reconstruction.The experimental results show that SSA algorithm has better noise reduction effect on different SNR signals,which was significantly better than other traditional noise reduction methods,and no more prior information was needed.

关 键 词:超声检测 奇异谱分析 主成分分析 信号重构 降噪 

分 类 号:TN911.4[电子电信—通信与信息系统] TN911.7[电子电信—信息与通信工程] TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象