Extension of Linear Response Regime in Weak-Value Amplification Technique  

在线阅读下载全文

作  者:张满超 张杰 苏闻博 杨雪滢 吴春旺 谢艺 吴伟 陈平形 Manchao Zhang;Jie Zhang;Wenbo Su;Xueying Yang;Chunwang Wu;Yi Xie;Wei Wu;Pingxing Chen(Institute for Quantum Science and Technology,College of Science,National University of Defense Technology,Changsha 410073,China;Hunan Key Laboratory of Mechanism and Technology of Quantum Information,Changsha 410073,China;Hefei National Laboratory,Hefei 230088,China)

机构地区:[1]Institute for Quantum Science and Technology,College of Science,National University of Defense Technology,Changsha 410073,China [2]Hunan Key Laboratory of Mechanism and Technology of Quantum Information,Changsha 410073,China [3]Hefei National Laboratory,Hefei 230088,China

出  处:《Chinese Physics Letters》2023年第4期1-5,共5页中国物理快报(英文版)

基  金:supported by the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301601);the Science and Technology Innovation Program of Hunan Province (Grant No.2022RC1194);the National Natural Science Foundation of China (Grant Nos.11904402,12074433,12004430,12174447,12204543,and 12174448)。

摘  要:The achievable precision of parameter estimation plays a significant role in evaluating a strategy of metrology.In practice,one may employ approximations in a theoretical model development for simplicity,which,however,will cause systematic error and lead to a loss of precision.We derive the error of maximum likelihood estimation in the weak-value amplification technique where the linear approximation of the coupling parameter is used.We show that this error is positively related to the coupling strength and can be effectively suppressed by improving the Fisher information.Considering the roles played by weak values and initial meter states in the weak-value amplification,we also point out that the estimation error can be decreased by several orders of magnitude by averaging the estimations resulted from different initial meter states or weak values.These results are finally illustrated in a numerical example where an extended linear response regime to the parameter is observed.

关 键 词:estimation ERROR PARAMETER 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象