检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺海浪 卢育霞[1,2] 池佩红 HE Hailang;LU Yuxia;CHI Peihong(Lanzhou Institute of Seismology,CEA,Lanzhou 730000,Gansu,China;Key Laboratory of Loess Earthquake Engineering of CEA&Gansu Province,Lanzhou 730000,Gansu,China)
机构地区:[1]中国地震局兰州地震研究所,甘肃兰州730000 [2]中国地震局(甘肃省)黄土地震工程重点实验室,甘肃兰州730000
出 处:《地震工程学报》2023年第3期724-734,共11页China Earthquake Engineering Journal
基 金:国家重点研发计划课题(2020YFC1522200,2017YFC1500906);国家自然科学基金项目(51678545);中国地震局地震预测研究所基本科研业务费项目(2020IESLZ03)。
摘 要:通过研究,旨在提出一种迁移学习方法,以应对机器学习在缺乏历史滑坡点数据的大区域很难取得良好的评估效果的挑战。首先,通过结合10个影响因子利用随机森林算法对2013年芦山7.0级地震极震区进行预训练,得到高精度的预训练模型。随后,采用直推式迁移学习方法进行初始迁移,并利用“半监督”评估方式补充青藏高原东北缘地区的标签数值点。最后,利用归纳式迁移学习进一步训练预训练模型,得到在青藏高原东北缘地区评估更准确的地震诱发滑坡易发性评估图。此外,使用Kullback-Leibler散度计算迁移前后区域影响因子数据的相似性,并对2022年泸定6.8级地震极震区进行评估应用,验证基于迁移学习的青藏高原东北缘地震诱发滑坡易发性评估模型的准确性。研究结果可为该区域地震诱发滑坡灾害预防提供一定的参考。Machine learning cannot achieve good evaluation results in large areas without historical landslide data;hence,this paper proposes a transfer learning method.First,a pretraining model with high accuracy was obtained by combining ten influencing factors,and the extremely seismic zone of the Lushan M 7.0 earthquake in 2013 was pretrained using the random forest algorithm.Then,an initial transfer was performed using the direct transfer learning method,and the label numerical points in the northeastern margin of the Qinghai-Tibetan Plateau were supplemented using the“semisupervized”evaluation method.Finally,the pretraining model was further trained using inductive transfer learning to obtain an accurate seismic landslide susceptibility assessment map in the northeastern margin of the Qinghai-Tibetan Plateau.In addition,similarity in the influencing factors before and after the transfer was calculated using the Kullback-Leibler divergence.The accuracy of the proposed model based on transfer learning in the northeastern margin of the Qinghai-Tibetan Plateau was verified by applying it to the extremely seismic zone of the Luding M 6.8 earthquake in 2022.This study provides a reference for preventing earthquake-induced landslides in the study region.
关 键 词:迁移学习 地震诱发滑坡易发性评估 随机森林 Kullback-Leibler散度
分 类 号:P642[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.28.197