检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:虞文波 游进国[1,2] 牛祥虞 Yu Wenbo;You Jinguo;Niu Xiangyu(Faculty of Information Engineering&Automation,Kunming University of Science&Technology,Kunming 650500,China;Key Laboratory of Artificial Intelligence in Yunnan Province,Kunming University of Science&Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]昆明理工大学云南省人工智能重点实验室,昆明650500
出 处:《计算机应用研究》2023年第6期1789-1793,共5页Application Research of Computers
基 金:国家自然科学基金项目(62062046);CCF信息系统开放项目(HZ2021F0055A)。
摘 要:传统关系型数据库通过人工方式进行索引推荐,已无法适应日益增长的数据需求,而机器学习技术可以有效地解决数据库索引选择问题。针对以往仅在静态数据库下进行索引推荐且无法及时更新索引配置的局限性,提出了一种基于强化学习算法实现为数据库数据动态变化情况下的一组工作负载推荐最佳多属性索引配置的方法(multi-attribute index intelligent recommendation approach,MIRA)。在公开的TPC-H数据集上的实验结果表明,该方法不仅能有效地为一组工作负载推荐最佳的索引配置,而且优于自定义的比较基线和相关强化学习方法。Traditional relational databases use the artificial way to achieve index recommendations that can no longer meet the growing requirement of data,and using machine learning technology can effectively solve the index optimization problem of databases.The limitation that only recommended the index in a static database and couldn’t update the index configuration in time,this paper proposed a multi-attribute index intelligent recommendation approach(MIRA)to recommend multi-attri-bute index configurations for a set of workloads using reinforcement learning under databases with dynamically changing data.Experimental results on TPC-H datasets show that MIRA can effectively recommend the optimal index configuration for workload,and outperforms the defined comparison baselines and related reinforcement learning methods.
关 键 词:索引优化 索引推荐 强化学习 关系型数据库 动态数据库
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.114.165