Notes concerning Codazzi pairs on almost anti-Hermitian manifolds  

在线阅读下载全文

作  者:Aydin Gezer Hasan Cakicioglu 

机构地区:[1]Department of Mathematics,Ataturk University,25240,Erzurum-Turkey

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2023年第2期223-234,共12页高校应用数学学报(英文版)(B辑)

摘  要:Let∇be a linear connection on a 2n-dimensional almost anti-Hermitian manifold M equipped with an almost complex structure J,a pseudo-Riemannian metric g and the twin metric G=g◦J.In this paper,we first introduce three types of conjugate connections of linear connections relative to g,G and J.We obtain a simple relation among curvature tensors of these conjugate connections.To clarify the relations of these conjugate connections,we prove a result stating that conjugations along with an identity operation together act as a Klein group,which is analogue to the known result for the Hermitian case in[2].Secondly,we give some results exhibiting occurrences of Codazzi pairs which generalize parallelism relative to∇.Under the assumption that(∇,J)being a Codazzi pair,we derive a necessary and sufficient condition the almost anti-Hermitian manifold(M,J,g,G)is an anti-K¨ahler relative to a torsion-free linear connection∇.Finally,we investigate statistical structures on M under∇(∇is a J−parallel torsion-free connection).

关 键 词:anti-Kahler structure Codazzi pair conjugate connection twin metric statistical structure 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象