检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林振烈 唐朝晖[2] 袁鹤 张虎[2,3] LIN Zhenlie;TANG Zhaohui;YUAN He;ZHANG Hu(Fankou Lead-Zinc Mine,Shenzhen Zhongjin Lingnan Non-ferrous Metal Company Limited,Shaoguan 510050,Guangdong,China;School of Automation,Central South University,Changsha 410083,China;School of Computer Science and Engineering,Changsha University,Changsha 410022,China)
机构地区:[1]深圳市中金岭南有色金属股份有限公司凡口铅锌矿,广东韶关510050 [2]中南大学自动化学院,长沙410083 [3]长沙学院计算机科学与工程学院,长沙410022
出 处:《有色金属(选矿部分)》2023年第3期122-130,143,共10页Nonferrous Metals(Mineral Processing Section)
基 金:国家自然科学基金资助项目(62171476、61771492);国家自然科学基金联合重点基金资助项目(U1701261)。
摘 要:浮选工况是浮选操作的重要判断依据,如何准确地识别浮选工况对浮选性能的提升有重要意义。基于机器视觉方法是浮选工况识别的主流方法,通常采用大数据技术在浮选工况数据集上建立浮选表层泡沫特征与浮选工况之间的关系模型,工况识别效果与工况数据集密切相关。一旦出现数据集中未包含的新工况,难以获得满意的识别效果。为此,针对当前大部分工况识别方法自适应性不足的问题,以锌精选为例,提出一种基于多特征宽度学习的锌浮选工况识别方法,以增量学习方式自适应新出现的工况。首先,根据多特征的不同特性,构建基于多特征宽度学习的锌精选工况识别模型;然后,在浮选状态变化和精选槽故障导致模型识别准确率降低时,通过拓宽特征层、增强层以及输出层的方式调整网络结构以进行增量学习。试验结果表明,基于多特征宽度学习系统的锌浮选工况识别方法具有良好的工况自适应性能,应用价值良好。Flotation condition is an important basis for judging flotation operation,and how to accurately identify the flotation conditions is of great significance to the improvement of flotation performance.Machine vision-based method is the mainstream method for working condition recognition in froth flotation,and it usually construct the relationship model between the visual features of froth appearance and working conditions by big data technology on the flotation working condition dataset.The performance of working condition recognition is closely related to the working condition dataset.When the dataset doesn't include the new working condition,it is difficult to obtain satisfactory results.Therefore,a working condition recognition method based on feature fusion width learning system is proposed in a zinc flotation process.The proposed method can adapt to new working condition by incremental learning.Firstly,a working condition model based on the feature fusion width learning system is introduced according to different characteristics of multiple visual features.Then,when the accuracy of recognition model is reduced due to the change of working condition or device fault,the network structure is adjusted by widening the feature layer,enhancement layer and output layer to implement incremental learning.The experimental results show that the proposed method based on feature fusion width learning system has nice robustness and self-adaptive performance in the real application.
关 键 词:锌浮选 工况识别 机器视觉 宽度学习系统 增量学习
分 类 号:TD921.2[矿业工程—选矿] TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.255.53