检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈栋胜 李清泉 涂伟 曹瑞 黄正东 贺彪 高文秀[2,3,4] CHEN Dongsheng;LI Qingquan;TU Wei;CAO Rui;HUANG Zhengdong;HE Biao;GAO Wenxiu(State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China;Department of Urban Informatics,School of Architecture and Urban Planning,Shenzhen University,Shenzhen 518060,China;Guangdong Key Laboratory of Urban Informatics,Shenzhen 518060,China;MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area,Shenzhen University,Shenzhen 518060,China)
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079 [2]深圳大学建筑与城市规划学院城市空间信息工程系,广东深圳518060 [3]广东省城市空间信息工程重点实验室,广东深圳518060 [4]自然资源部大湾区地理环境监测重点实验室,广东深圳518060
出 处:《武汉大学学报(信息科学版)》2023年第5期784-792,共9页Geomatics and Information Science of Wuhan University
基 金:国家自然科学基金(42071360);深圳市基础研究重点项目(JCYJ20220818100200001)。
摘 要:城中村的精细空间分布是城市规划与城市更新的重要参考。由于城中村具有语义高级和遥感影像特征辨识度不足的特点,使用传统的场景识别方法难以从高密度城市中获得精度良好的城中村精细空间分布。针对城中村的精细识别问题,提出了一种新颖的融合遥感影像和社会感知的层次化识别方法。该方法在特征上融合了遥感图像和社会感知数据的优点,其层次化结构同时考虑了大范围的上下文信息和小范围的局部信息,为在精细尺度全面理解城中村提供了一个新思路。基于该方法对深圳市的城中村进行了空间识别,获得了2.5 m空间分辨率的精细城中村分布。精度验证表明,该结果的总体精度和Kappa系数分别达到98.68%和0.807,说明该方法具有优秀的表现。此外,还通过对照实验分别证明了层次化识别框架、融合遥感影像和社会感知数据的增益效果。结果表明,层次化框架和多源空间数据都能有效提高城中村识别方法的精度。Objectives:The fine spatial distribution of urban villages is important for urban planning and urban renewal.However,since urban villages are high-level semantic geo-objects and have obscure remote sensing characteristics,it is difficult to obtain fine spatial distribution with good precision from high-density cities using traditional methods.Methods:We propose a novel hierarchical recognition method for urban villages that fuses remote sensing images and social sensing data to finely recognize the urban villages.The method combines the advantages of remote sensing images and social perception data in features.Largeand small-scale information are both considered into the process by using the hierarchical framework.Results:The method provides a new idea for a comprehensive understanding of urban villages at a fine scale.A case study has been implemented in Shenzhen.An urban village distribution with a spatial resolution of 2.5 m is obtained.The accuracy assessment shows that the overall accuracy and Kappa coefficient reach 98.68%and 0.807,respectively,indicating the excellent performance of the method.In addition,the gain effects of the hierarchical framework and the fusion of remote sensing images and social perception data are demonstrated,respectively.Conclusions:The results show that both the hierarchical framework and the multi-source spatial data are effective in improving the accuracy of the urban village recognition method.
关 键 词:城中村 非正式居住地 层次化识别 遥感图像 社会感知 深度卷积特征 多源空间特征
分 类 号:TU984[建筑科学—城市规划与设计] P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249