基于Leiden算法的共享单车活动社区识别方法——南京案例分析  

A Method for Identifying Operation Zones of Free-floating Shared Bikes Based on Leiden Algorithm:A Case Study of the City of Nanjing

在线阅读下载全文

作  者:成骋 陈文栋 马洪生 刘锡泽 陈学武[1,2,3] CHENG Cheng;CHEN Wendong;MA Hongsheng;LIU Xize;CHEN Xuewu(Jiangsu Key Laboratory of Urban ITS,Southeast University,Nanjing 211189,China;Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies,Southeast University,Nanjing 211189,China;School of Transportation,Southeast University,Nanjing 211189,China;Shenzhen General Integrated Transportation and Municipal Engineering Design&Research Institute Co.,Ltd,Shenzhen 518003,Guangdong,China)

机构地区:[1]东南大学江苏省城市智能交通重点实验室,南京211189 [2]东南大学现代城市交通技术江苏高校协同创新中心,南京211189 [3]东南大学交通学院,南京211189 [4]深圳市综合交通与市政工程设计研究总院有限公司,广东深圳518003

出  处:《交通信息与安全》2023年第2期103-111,156,共10页Journal of Transport Information and Safety

基  金:国家自然科学基金面上项目(52172316)资助。

摘  要:目前共享单车分区运营管理中多以行政区为基础划分运营分区,未充分考虑共享单车出行需求的空间分布特征,导致较多跨区调度工作,严重影响运营效率。结合南京共享单车出行订单数据,研究了基于Leiden算法的共享单车活动社区识别方法,构建“出行起讫点-交通小区-空间交互网络”的3层数据结构;采用Leiden社区识别算法,识别共享单车活动社区,以活动社区作为共享单车的运营子区,进行运营区域划分;通过对比不同年份的共享单车活动社区识别结果,揭示共享单车出行空间分布的时变特征;选取网络模块度与计算效率2项指标,比较多种社区识别算法的性能,以验证Leiden算法在该研究问题中的有效性与优越性。结果表明:①针对2019年的单车出行数据,算法共识别出23个活动社区,共享单车区内出行的比例达到82.9%,相比传统分区方法增加了11%,表明本算法能够使得共享单车出行更多被划分于社区内部,可以提高区域内部的共享单车自循环率,改善分区运营效率;②相比于2019年,2022年社区尺度规模有所减小,社区数量有所增加,反映共享单车用户出行距离缩短,跨区出行比例降低。③Leiden算法的社区识别结果中,网络模块度达到0.55,相比传统的CNM算法(0.2)、Walktrap算法(0.31)和Louvain算法(0.42)有较大提高;运算时间为1.1 s,其他3种算法分别为6.4,1.6,1.4 s,在计算速度上也有明显提升。上述指标表明Leiden算法在分区质量和计算效率上优于同类其他算法。该方法揭示了共享单车出行的空间特征,可以获得更优的活动分区管理方案,为共享单车分区运营方案的合理确定提供了理论指导。In the operation and management of the free-floating shared bike(FFSB)industry,the operation zones are mainly determined based on administrative boundaries of districts without fully considering the spatial distributions of travel demand of FFSB,resulting in a large number of inter-zone transfer tasks which seriously deteriorates the efficiency of its operation.To this end,a new method for identifying operation zones of FFSB based on a Leiden community detection algorithm is developed using the bike order data from the City of Nanjing.A three-layer data structure of“travel OD(origin-destination)-traffic zone-spatial interaction network”is developed.The Leiden community detection algorithm is used to identify the FFSB communities,which are taken as the operation sub-zones of FFBS to divide the operation zones.By comparing the communities of FFBS in different years,the temporal characteristics of the spatial distribution of FFBS travel are revealed.In addition,two indicators,network modularity and computational efficiency,are adopted to compare the performance of various community detection algorithms and to further verify the effectiveness and superiority of the Leiden algorithm in this research problem.The results show that:①regarding the FFBS travel in 2019,the proposed algorithm identifies 23 activity communities,and the proportion of FFBS travel within the communities reaches 82.9%,which is higher than the traditional partition method by 11%.This indicates that the proposed algorithm can make more FFBS travel be classified within communities,increase the self-cycle rate of shared bikes within a zone,and improve the operational efficiency.②Comparing to the case in 2019,the scale of communities decreased and the number of communities increases in 2022,implying a reduction in the travel distance of FFBS users and a decrease in the proportion of inter-zone travel.③In terms of the results from the proposed algorithm,the network modularity reaches 0.55,which is significantly improved,comparing with the res

关 键 词:交通规划与管理 共享单车 活动社区识别 Leiden算法 空间交互网络 

分 类 号:U491.54[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象