检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李元诚[1] 秦永泰 LI Yuancheng;QIN Yongtai(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学控制与计算机工程学院,北京102206
出 处:《通信学报》2023年第5期181-192,共12页Journal on Communications
基 金:国网江西信息通信公司基金资助项目(No.52183520007V)。
摘 要:针对软件定义安全场景中的服务质量(QoS)实时优化方案因安全防护手段与业务场景不匹配而导致的适用困难和性能下降的问题,提出了基于深度强化学习的软件定义安全中台QoS实时优化算法。首先,将碎片化的安全需求与安全基础设施统一到软件定义安全中台云模型中;然后,通过深度强化学习结合云计算技术提高安全中台的实时匹配和动态适应能力;最后,生成满足QoS目标的安全中台资源实时调度策略。实验结果表明,与现有实时算法相比,所提算法不但保证负载均衡,还提高了18.7%的作业调度成功率以提高服务质量,降低了34.2%的平均响应时间,具有很好的稳健性,更适用于实时环境。To overcome the problem that the real-time optimization of the quality of service(QoS)in software-defined security scenarios was hindered by the mismatch between security protection measures and business scenarios,which led to difficulties in application and performance degradation.,a novel algorithm based on deep reinforcement learning for optimizing QoS in software defined security middle platforms(SDSmp)in real-time was proposed.Firstly,the fragmented security requirements and infrastructure were integrated into the SDSmp cloud model.Then by leveraging the power of deep reinforcement learning and cloud computing technology,the real-time matching and dynamic adaptation capabilities of the security middle platform were enhanced.Finally,a real-time scheduling strategy for security middle platform resources that meet QoS goals was generated.Experimental results demonstrate that compared to existing real-time methods,the proposed algorithm not only ensures load balancing but also improves job success rate by 18.7%for high QoS and reduces the average response time by 34.2%,and it is highly robust and better suited for real-time environments than existing methods.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112