检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶志雄[1] 殷炜栋[1] TAO Zhixiong;YIN Weidong(School of Science,Zhejiang University of Science and Technology,Hangzhou 310023,Zhejiang,China)
出 处:《浙江科技学院学报》2023年第3期209-212,共4页Journal of Zhejiang University of Science and Technology
基 金:浙江省省级国际化线上线下混合式一流课程(浙教办函〔2021〕195号)。
摘 要:【目的】二分支链环L=L_(1)∪L_(2)称为二邻近于W=W_(1)∪W_(2),假如存在L的两个交叉c1,c2,则改变其中任何1个或同时改变它们2个都得到W。D=D(oc1,oc2)是分别打开这两个交叉所得的链环。为了对链环进行二邻近分类,探讨了二邻近链环多项式的一个系数。【方法】利用文献[1]768-770中关于二邻近链环的结论,对实现链环的二邻近过程进行了仔细的分析,并讨论了各分支之间的链环数的相互关系,借此特别研究了D的Conway多项式z3的系数a3[1]768的表达式。【结果】若两个交叉c1,c2在不同的分支上,则a3(D)=λ2lk(L),λ∈Z。【结论】不可能通过改变两个异号的交叉使得定向的L4a1二邻近于定向的L9n10。[Objective] A two-branch link L=L_(1)∪L_(2) is said to be 2-adjacent to W=W_(1)∪W_(2). If there are two crossings c1, c2 of L, applying crossing change to either of them or both of them yields W, in which D=D(oc1,oc2) denotes the link obtained by smoothing the two crossings. To investigate the 2-adjacent classification of the link, a coefficient of 2-adjacent link polynomial was researched. [Method] the conclusions in the reference [1]768-770 on the 2-adjacent link were made use of, elaborating on the 2-adjacent process to actualize the link and the relationship of the linking number among the branches, and attaching special attention to the expression of the coefficient a3[1] 768 of D's Conway polynomial z3. [Result] If two crossings c1, c2 are on different branches, then a3(D)=λ2lk(L), λ∈Z. [Conclusion] The oriented link L4a1 is unlikely to be 2-adjacent to the oriented link L9n10 by changing two crossings with different signs on different branches.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.202.216