检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李雪莹 LI Xueying(China University of Petroleum(Beijing))
机构地区:[1]中国石油大学(北京)
出 处:《油气田地面工程》2023年第6期14-19,共6页Oil-Gas Field Surface Engineering
摘 要:为改善现有油气水多相流量预测时存在精度低的问题,建立了一种基于深度学习的多相流量预测模型。设计了多相流测试实验及数据采集方案,为多相流量预测提供数据支撑;设计了特征提取器、标签预测器和域鉴别器3个模块,可通过最小化损失函数实现域鉴别器区分源域和目标域特征。对油、水、空气3种不同的转移场景进行试验,并与CNN和DNN模型进行对比。结果表明,基于深度学习的多相流量预测模型性能更优,3种场景下流量预测平均绝对百分比误差(MAPE)分别为8.41%、11.05%和9.08%。仿真结果进一步验证了基于深度学习的多相流量预测模型的有效性和准确性。In order to improve the low accuracy of the existing oil,gas and water multiphase flow prediction,a multiphase flow prediction model based on deep learning is established.Firstly,the multiphase flow test experiment and data acquisition scheme are designed to provide data support for multiphase flow prediction.Secondly,three modules,namely feature extractor,tag predictor,and domain discriminator,are designed.The domain discriminator can distinguish the source domain from the target domain by minimizing the loss function.In the experimental stage,the experimental process of three different transfer scenarios of oil,water,and air is designed,and compared with CNN and DNN models.The results show that the multiphase flow prediction model based on deep learning has better performance,and the Mean Absolute Percentage Error(MAPE)of the flow prediction under three scenarios is 8.41%,11.05%,and 9.08%,respectively.The simulation results further verify the validity and accuracy of the multiphase flow prediction model based on deep learning.
关 键 词:多相流 流量预测模型 深度学习 流对抗网络 平均绝对百分误差
分 类 号:TE35[石油与天然气工程—油气田开发工程] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.28.86