机构地区:[1]上海海洋大学水产科学国家级实验教学示范中心,上海201306 [2]中国水产科学研究院珠江水产研究所、农业农村部热带亚热带水产资源利用与养殖重点实验室、广东省水产动物免疫技术重点实验室,广东广州510380
出 处:《渔业科学进展》2023年第3期23-36,共14页Progress in Fishery Sciences
基 金:国家重点研发计划(2019YFD0900302);广东省促进经济发展专项资金(粤农2019B13);财政部和农业农村部:国家现代农业产业技术体系共同资助。
摘 要:固相反硝化去除水产养殖尾水中硝酸盐氮(NO_(3)^(-)-N)具有广阔的应用前景,水力停留时间(hydraulic retention time,HRT)和进水硝酸盐浓度(influent nitrate concentration,INC)是影响反硝化系统反硝化性能的主要因素之一,需要对HRT进行优化,掌握其最大NO_(3)^(-)-N处理能力。本研究首次以香蕉杆为反硝化反应器的外加碳源,在流场环境下,测定不同HRT和INC下反硝化系统对NO_(3)^(-)-N、亚硝酸盐氮(NO_(2)^(–)-N)、氨氮(NH_(4)^(+)-N)、总氮(TN)、总磷(TP)和化学需氧量(COD)的去除效果。并采用基于Illumina Miseq测序平台的高通量测序技术,对反硝化系统运行初期及末期的细菌群落进行16S rDNA V3和V4区测序分析。结果显示,香蕉杆反应器的最佳HRT为20 h,对应NO_(3)^(-)-N去除率为(96.71±1.36)%,且无NO_(2)^(-)-N积累。在最佳HRT的基础上,反应器的出水硝酸盐浓度(effluent nitrate concentration,ENC)和硝酸盐去除速率(nitrate removal rate,NRR)均随INC的增加而显著增加(P<0.05),出水COD随INC的增加而降低。此外,反应器在整个实验期间能完全去除NH_(4)^(+)-N。高通量测序结果显示,经过长期运行后,反应器内的优势菌门包括变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、弯曲杆菌门(Campilobacterota)和厚壁菌门(Firmicutes),它们的相对丰度分别增至31.20%、6.67%、3.08%和4.26%,保证了反应器的高效运行。此外,在属水平上,反应器初期和末期的优势菌存在明显差异。本研究为农业废弃物作为养殖尾水反硝化碳源的工艺优化提供了理论参考。In China,aquaculture is the primary source of aquatic products due to the decrease in wild fishery resources.In 2018,the total output of aquatic products in China expanded to 47.6 million tons,accounting for 58%of global aquaculture production.Intensive culture methods generally use significant quantities of feed however,approximately 75%of nitrogen in the feed is retained in aquaculture water,mainly as soluble nitrogen,such as ammonia nitrogen(NH_(4)^(+)-N)and nitrate(NO_(3)^(-)-N),owing to low feed-utilization rates during cultivation.At the same time,fishes generate a substantial amount of excreta,which will cause the increase of nitrogen compounds in water and negatively affects the quality of aquatic products.Serious problems could occur if nitrogen compounds are discharged into the environment,including the eutrophication of rivers,the deterioration of drinking water sources,and hazards to human health.Furthermore,nitrates can form potentially carcinogenic compounds,such as nitrosamines and nitrosamides,and nitrate consumption can cause methemoglobinemia in infants.The Second National Census of Pollution Sources survey showed that the total nitrogen emission from aquaculture was 99100 tons in 2017.To protect the environment and human health,it is important to remove nitrogen from aquaculture tailwater before discharging it to the surrounding waters.Biological denitrification is considered the most promising approach since nitrate can be reduced to harmless nitrogen gas by bacteria.A sufficient carbon source is necessary during the heterotrophic denitrification process.To solve the problems mentioned above,external liquid carbon sources such as methanol,acetic acid,and glucose are added to the tailwater,but they are costly,require high-energy,and have high operating requirement.In contrast,agricultural wastes as a carbon source have exhibited significant economic advantages and high efficiency.Many aquaculture tailwater treatment systems often face variations in hydraulic retention times(HRT)and influent nit
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...