一种Iridium机会信号/MEMS-INS组合定位技术  

An integrated positioning algorithm of Iridium opportunity signals and MEMS-INS

在线阅读下载全文

作  者:秦红磊[1] 杜岩松 QIN Honglei;DU Yansong(School of Electronic and Information Engineering,Beihang University,Beijing 100191,China)

机构地区:[1]北京航空航天大学电子信息工程学院,北京100191

出  处:《导航定位学报》2023年第3期45-52,共8页Journal of Navigation and Positioning

摘  要:针对铱星(Iridium)系统作为一种天基机会信号源可以实现载体静态定位功能,但是其可见星较少,无法实现独立动态定位的问题,提出一种Iridium机会信号/MEMS-INS组合定位技术:分析Iridium信号体制及Iridium多普勒观测量提取算法;然后建立基于扩展卡尔曼滤波(EKF)的Iridium/惯导(INS)动态组合定位模型,并提出一种基于新息的自适应抗差EKF算法(AR-EKF);最后搭建微机电惯导(MEMS-INS)与Iridium信号组合定位系统。实验结果表明,提出的Iridium/INS组合定位AR-EKF算法相比EKF算法定位精度可提高40%以上,相比单INS定位精度可提高90%以上,可为GNSS失效场景下动态定位提供参考。Aiming at the problem that as a space-based opportunistic signal source,Iridium system can achieve carrier static positioning function,but it cannot achieve independent dynamic positioning due to the small number of visible stars,the paper proposed an integrated positioning algorithm of Iridium opportunity signals and micro-electro-mechanical system inertial navigation system(MEMS-INS):the Iridium signal system and the Iridium Doppler measurement extraction algorithm were analyzed;then,a dynamic combined positioning model of Iridium and inertial navigation system(INS)based on extended Kalman filter(EKF)was established,and an innovation-based adaptive robustness EKF algorithm(AR-EKF)was put forward;finally,an integrated positioning system of MEMS-INS and Iridium signals was built.Experimental results showed that the proposed integrated positioning algorithm could improve the positioning accuracy by more than 40%and by more than 90%compared with the EKF algorithm and single INS,respectively,which would provide a reference for dynamic positioning in GNSS-denied environments.

关 键 词:全球卫星导航系统(GNSS)失效 机会信号 铱星 微机电惯导 扩展卡尔曼滤波(EKF) 自适应抗差 

分 类 号:P228[天文地球—大地测量学与测量工程] V249.32[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象