建成环境对轨道交通客流非线性影响的空间特征  被引量:5

Spatial Patterns of Nonlinear Effects of Built Environment on Beijing Subway Ridership

在线阅读下载全文

作  者:贺鹏 李雯茜 李妍 许奇[2] HE Peng;LIWen-xi;LI Yan;XU Qi(School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China;Beijing Urban Construction Design&Development Group,Beijing 100037,China)

机构地区:[1]北京交通大学土木建筑工程学院,北京100044 [2]北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京100044 [3]北京城建设计发展集团股份有限公司,北京100037

出  处:《交通运输系统工程与信息》2023年第3期187-194,共8页Journal of Transportation Systems Engineering and Information Technology

基  金:国家自然科学基金(71971021)。

摘  要:机器学习模型是研究建成环境对城市轨道交通车站客流影响的非线性方法,但既有的解释工具对该类模型结果空间特征的分析仍不够充分。基于多源位置大数据提出城市轨道交通建成环境的多维度指标及其计算方法,采用极限梯度提升决策树和局部回归分析技术,构建样本的κ指标以分析建成环境对客流非线性影响的空间特征。针对北京地铁的案例研究表明:建成环境对城市轨道交通车站出站客流的非线性影响差异显著,就业密度、公共交通可达性和用地混合度等排序前三的解释变量的重要度高达42.51%。这3个解释变量的κ指标空间分布呈现显著的空间异质性,表明客流对建成环境的依赖关系具有空间非平稳性。上述建成环境对客流非线性影响的空间效应说明:城市轨道交通车站周边用地开发不仅宜采取因地制宜的差异化发展策略,而且还需合理确定不同区域车站资源开发配置的下限值,激活建成环境因素的阈值效应以改善客流效果。Machine learning is a nonlinear approach to examine the effects of built environment on station-level ridership of urban rail transit.But existing interpretation approach are not able to analyze the spatial patterns of results derived from machine learning models.This paper first utilizes multi-source location-based big data to quantify the indicators of built environment of urban rail transit,and then uses theκindictor to analyze the spatial distribution of nonlinear effect of built environment on urban rail transit passenger flow based on the extreme gradient boosting incorporating local regression technique.The case study of Beijing subway shows that the nonlinear effects of built environment factors on egress flow of urban rail transit is significantly different.The top three indictors of built environment,including employment density,public accessibility,and mixed land use,account for 42.51%of total importance of variables.The spatial distributions ofκindictor of these three built environment factors show significant spatial heterogeneity,indicating the spatial non-stationary relationship between the passenger flow and built environment.The nonlinear spatial patterns indicate that the development of urban rail transit stations should not only adopt differentiated policies and strategies in different areas,but should also determine reasonable lower limit of resource to activate threshold effect of built environment,which would help to increase the ridership of urban rail transit.

关 键 词:城市交通 建成环境 非线性建模 空间非平稳性 模型解释 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象