检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ming-Ran Zhang Yu Su
机构地区:[1]Department of Mechanics,School of Aerospace Engineering,Beijing Institute of Technology,Beijing,P.R.China [2]Department of Mechanical Engineering,Quzhou University,Quzhou,P.R.China
出 处:《International Journal of Smart and Nano Materials》2023年第2期155-169,共15页国际智能和纳米材料杂志(英文)
基 金:This work was supported by the National Natural Science Foundation of China under Grant No.12172046.
摘 要:The polarization reorientation in ferroelectric nanomaterials under high-strength AC electric fields is intrinsically a frequency-dependent process.However,the related study is not widely seen.We report a phase-field investigation regarding the dynamics of polarization switching and the electromechanical characteristics of a polycrystalline BaTiO_(3) nanofilm under applied frequency from 0.1 to 80 kHz.The grain boundaries and the in-plane strains are considered in the model.The obtained hysteresis and butterfly loops exhibit a remarkable variety of shapes with the changing frequency.The underlying mechanism for the observed frequency-dependent physical properties was discussed via domain structure-based analysis.In addition,we examined the influence of the kinetic coefficient in the Ginzburg-Landau equation as well as the influence of the electric-field amplitude to the frequency dependency.It was found that a higher value of kinetic coefficient or field amplitude tends to enhance the mobility of polarization switching and to transform high-frequency characteristics to low-frequency ones.
关 键 词:FERROELECTRIC NANOGRAIN grain boundary phase field frequency dependence
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7