检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄雄 姚丕强[1] 杜鑫[1] 聂文海[1] 刘迪 HUANG Xiong(Tianjin Cement Industry Design&Research Institute Co.LTD.,Tianjin 300400,China)
机构地区:[1]天津水泥工业设计研究院有限公司,天津300400
出 处:《水泥》2023年第5期33-37,共5页Cement
基 金:中国建材集团攻关专项(2021HX0405);全国建材行业重大科技攻关“揭榜挂帅”项目(20221JBGS02-05)。
摘 要:为研究分别粉磨配制水泥中多组分下各原料对强度的影响,提出利用多层感知器(multi-layer perceptron,MLP)神经网络建立模型的方法。选用矿粉、粉煤灰和石灰石粉作为混合材,进行单因素试验得到活性数据,设计分别粉磨配制水泥配比组成试验样本,通过训练数据构建MLP神经网络模型,归纳出相关因素与强度之间的表达式。结果表明:活性越高的混合材多掺或适当磨细更有助于提高强度,增加石灰石粉含量有助于提升3 d抗压强度;所建立模型对3 d和28 d龄期抗压强度的预测结果精准,平均相对误差小于2%。In order to study the influence of each raw materials on the strength of the multi-component cement prepared by grinding separately,a model based on multi-layer perceptron(MLP)neural network was proposed.Ground granulated blastfurnace slag,fly ash and limestone powder were selected as admixture,and the activity data were obtained by single factor experiment.The test samples of cement prepared by grinding separately were designed.The MLP neural network model was constructed through the training data,and the expressions between the related factors and strength were summarized.The results show that more mixing or grinding of admixture with higher activity is more conducive to improving the strength,and increasing the content of limestone powder is conducive to improving the 3 d compressive strength.The prediction results of the model for 3 d and 28 d compressive strength were accurate,and the average relative error is less than 2%.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TQ172.63[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.255.53