检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨超 韩海斌 韦波 张衡[1] 商宸 苏冰 刘思源 蒋沛雯 相德龙 YANG Chao;HAN Haibin;WEI Bo;ZHANG Heng;SHANG Chen;SU Bing;LIU Siyuan;JIANG Peiwei;XIANG Delong(Key Laboratory of East China Sea&Oceanic Fishery Resources Exploitation and Utilization,Ministry of Agriculture of China,East China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences,Shanghai 200090,China;College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;College of Navigation and Ship Engineering,Dalian Ocean University,Liaoning Dalian 116023,China;School of Ecology and Environment,Anhui Normal University,Anhui Wuhu 241000,China)
机构地区:[1]中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海200090 [2]上海海洋大学海洋科学学院,上海201306 [3]大连海洋大学船舶与工程学院,辽宁大连116000 [4]安徽师范大学生态与环境学院,安徽芜湖241000
出 处:《中国农业科技导报》2023年第4期225-233,共9页Journal of Agricultural Science and Technology
基 金:国家重点研发计划项目(2018YFC1406802);中央级公益性科研院所基本科研业务费专项(2021M06);上海市野外科学观测研究站开放基金资助项目(K202001);浙江省远洋渔业资源探捕项目(CTZB-2022080076)。
摘 要:为使鱼类年龄鉴定工作更加准确高效,基于2020—2021年的远东拟沙丁鱼(Sardinops sagax)948尾样本测量的叉长、体质量与耳石质量等生物学数据,结合传统耳石年龄轮纹观察法构建远东拟沙丁鱼年龄鉴定新方法。首先将其矢耳石包埋、研磨和拍照,通过轮纹观察法初步判读其准确年龄,之后构建基于一元线性回归方程、多元线性回归方程以及深度学习模型共3种年龄鉴定方法,阐述了远东拟沙丁鱼年龄鉴定方法构建和准确度提升过程。通过分析单个生物学特征所拟合的一元线性回归方程,对比其R2得出,耳石重量与轮纹观察法所得年龄的相关系数最高。据耳石重量拟合出一元线性回归方程进行年龄鉴定,与多元回归线性方程与深度学习模型所得的年龄鉴定结果进行比较可知,一元回归线性方程、多元线性回归方程及深度学习模型的鉴定结果与轮纹观察法相比在无误差的标准下其准确率分别为43.6%、54.0%和71.6%。该方法将极大提高远东拟沙丁鱼年龄鉴定的准确率及效率,为鱼类年龄鉴定提供新的方法与思路。To make fish age identification more accurate and efficient,based on the biological data such as fork length,weight,and otolith weight measured by 948 samples of Sardinops sagax from 2020 to 2021,and combined with the traditional otolith age wheel observation method,a new method for age identification of Sardinops sagax was constructed.Firstly,the otolith was buried,ground,and photographed.Its accurate age was preliminarily interpreted by the wheel pattern observation method scenario.Three ways were newly built based on the univariate linear regression equation,the multiple linear regression equation,and the deep learning model.The construction and accuracy improvement process of the age identification method of Sardinops sagax were elaborated.By analyzing the R2 of the univariate linear regression equation fitted by a single biological feature,the correlation coefficient between the weight of the otolith and the age observed by the rotting method was the highest.According to the age identification of the unary linear regression equation fitted by the weight of the otolith and compared with the age identification results obtained by the multiple regression linear equation and the deep learning model,it could be seen that the identification results of the univariate regression linear equation,the multiple linear regression equation,and the deep learning model were 43.6%,54.0%,and 71.6%respectively under the standard of no error compared with the wheel pattern observation method.This method would greatly improve the accuracy and efficiency of the age identification of Sardinops sagax,and provide new methods and ideas for fish age identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7