基于U-Net的矿山微震初至拾取研究  被引量:2

Arrival Picking of Mine Microseismic Events Using U-Net

在线阅读下载全文

作  者:胡婷 徐彬[2] 王永发 周江 朱家怡 HU Ting;XU Bin;WANG Yong-fa;ZHOU Jiang;ZHU Jia-yi(Hope College,Southwest Jiaotong University,Chengdu 610400,China;Geomathematics Key Laboratory of Sichuan Province,Chengdu University of Technology,Chengdu 610059,China)

机构地区:[1]西南交通大学希望学院,成都610400 [2]成都理工大学数学地质四川省重点实验室,成都610059

出  处:《科学技术与工程》2023年第16期6802-6809,共8页Science Technology and Engineering

基  金:四川省科技计划项目(2022YFS0521);四川省自然科学基金(2023NSFSC0020)。

摘  要:初至到时拾取是微震数据处理中基础而又重要的环节,关系到整个微震监测系统的精度与可靠性。因此,为了解决传统初至拾取方法存在拾取效率低和拾取精度差的问题,引入深度学习方法,构建U型神经网络(U-Net)来预测三分量矿山微震数据P波、S波和噪声的概率分布,并根据概率峰值提取其初至到达时间。实验结果表明:本文算法的拾取结果准确度高且误差范围较小,与AR pick(auto regression pick)算法相比,其拾取结果具有明显的优越性。所构建的初至拾取模型可用于矿山动力灾害微震监测,解决微震监测的瓶颈问题,为矿山安全生产风险智能监测预警提供强力技术支撑。Arrival picking is a basic and important link in microseismic data processing,which is related to the accuracy and reliability of the whole microseismic monitoring system.Therefore,in order to solve the problems of low arrival picking efficiency and poor arrival picking precision in the traditional methods,the depth learning method was introduced,the U network(U-Net)was constructed to predict the probability distribution of P wave,S wave and noise in three-component mine microseismic data,and the arrival time was extracted according to the peak of probability.Experimental results show that the proposed algorithm has high accuracy and small error range,and it has obvious advantages over auto regression pick(AR pick)algorithm.The arrival picking model can be used in microseismic monitoring of the mine dynamic disaster,solve the bottleneck problem of microseismic monitoring,and provide strong technical support for mine safety production risk intelligent monitoring and early warning.

关 键 词:矿山微震 矿山动力灾害 初至拾取 U-Net 

分 类 号:P628[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象