检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴崇明 王晓丹[2] 赵振冲 WU Chongming;WANG Xiaodan;ZHAO Zhenchong(College of Business,Xijing University,Xi’an 710123,China;College of Air and Missile Defense,Air Force Engineering University,Xi’an 710051,China)
机构地区:[1]西京学院商学院,西安710123 [2]空军工程大学防空反导学院,西安710051
出 处:《计算机科学》2023年第S01期137-141,共5页Computer Science
基 金:国家自然科学基金项目(61876189,61273275)。
摘 要:为提升代价敏感分类性能,通过提升较高误分代价类别的学习精度来降低总误分代价,利用支持向量域描述(Support Vector D omain Description,SVDD)实现代价敏感分类,提出一种代价敏感SVDD二类分类方法CS-SVDD。该方法首先将单类SVDD拓展为二类分类SVDD,对不同类别分别构建SVDD超球体,通过误分类代价调节SVDD分类器对不同类别样本的分类精度,对误分代价高的类别进行更为精确的学习,从而降低总误分代价;对于处于两个超球体之外或覆盖区域的类别属性不明确的样本,以误分代价最小为原则定义代价敏感决策规则。在人工数据集和UCI数据集上与同类方法进行了实验比较,实验结果表明了所提方法的有效性。In order to improve the performance of cost-sensitive classification,this paper improves the learning accuracy of higher misclassification cost categories to reduce the total misclassification cost,uses support vector domain description(SVDD)to reali-ze cost sensitive classification,and proposes a cost sensitive SVDD two-class classification method,CS-SVDD.This method first expands single class SVDD to two class classification SVDD,and constructs SVDD hyperspheres for different categories.by adjusting the classification accuracy of SVDD classifier for different class samples through the misclassification cost,the class with high misclassification cost can be more accurately learned,so as to reduce the total misclassification cost.For the samples with ambiguous category attributes outside the two hyperspheres or in the coverage area,cost sensitive decision rules are defined based on the principle of minimum misclassification cost.Experimental results on artificial data sets and UCI data sets show the effectiveness of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30