检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵鹏 周建涛[1,2,3,4,5,6,7] 赵大明 ZAHO Peng;ZHOU Jiantao;and ZHAO Daming(College of Computer Science,Inner Mongolia University,Hohhot 010021,China;National&Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian,Hohhot010021,China;Engineering Research Center of Ecological Big Data,Ministry of Education,Hohhot 010021,China;Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software,Hohhot 010021,China;Inner Mongolia Key Laboratory of Social Computing and Data Processing,Hohhot 010021,China;Inner Mongolia Engineering Laboratory for Big Data Analysis Technology,Hohhot 010021,China;Inner Mongolia Key Laboratory of Discipline Inspection and Supervision Big Data,Hohhot 010021,China)
机构地区:[1]内蒙古大学计算机学院,呼和浩特010021 [2]蒙古文智能信息处理技术国家地方联合工程研究中心,呼和浩特010021 [3]生态大数据教育部工程研究中心,呼和浩特010021 [4]内蒙古自治区云计算与服务软件工程实验室,呼和浩特010021 [5]内蒙古自治区社会计算与数据处理重点实验室,呼和浩特010021 [6]内蒙古自治区大数据分析技术工程实验室,呼和浩特010021 [7]内蒙古自治区纪检监察大数据重点实验室,呼和浩特010021
出 处:《计算机科学》2023年第S01期642-650,共9页Computer Science
基 金:国家自然科学基金(62162046);内蒙古科技攻关项目(2021GG0155);内蒙古自然科学基金重大项目(2019ZD15);内蒙古自然科学基金(2019GG372)。
摘 要:随着云计算技术的快速发展,越来越多的用户选择使用云服务。负载请求与资源供应的不匹配问题日益凸显,使得用户请求无法得到及时响应,极大地影响云服务质量,实时预测负载请求,将有助于及时供应资源。针对云计算环境中的负载预测方法性能低的问题,提出了一种基于自适应噪声的完备经验模态分解和卷积长时序神经网络组合模型(CEEMDAN-ConvLSTM)的云计算负载预测方法。首先运用自适应噪声的完备经验模态(CEEMDAN)分解技术对数据序列进行分解操作,将其转换为若干个易于分析和建模的子序列;然后运用卷积长时序神经网络(ConvLSTM)预测模型对这一系列子序列进行建模预测,并采用基于多进程并行计算的研究思路,实现多序列并行预测及贝叶斯优化调参;最后将预测值综合叠加以获得整个模型的预测输出,从而实现对原始复杂序列数据进行高精度预测的目标。使用Google集群工作负载数据集进行实验验证,实验结果表明,CEEMDAN-ConvLSTM组合模型具有良好的预测效果,相比自回归差分移动平均模型(ARIMA)、长短期记忆网络(LSTM)和卷积长时序神经网络(ConvLSTM),所提模型预测均方根误差(RMSE)指标分别提升了30.9%,30.1%和22.5%。With the rapid development of cloud computing technology,more and more users choose to use cloud services,and the problem of mismatch between load requests and resource supply becomes increasingly prominent.As a result,user requests cannot be timely responded,which greatly affects the cloud service quality.Real-time prediction of load requests will help the timely supply of resources.To solve the problem of low performance of load prediction methods in the cloud computing environment,a cloud computing load prediction method based on hybrid model of complete ensemble empirical mode decomposition with adaptive noise and convolutional long short-term memory(CEEMDAN-ConvLSTM)is proposed.To begin with,the data sequence is decomposed into several sub-sequences which are easy to analyze and model.Then the convolutional long short-term memory(ConvLSTM)prediction model is used to predict the series of sub-sequences.The research idea based on multi-process parallel computation is adopted to realize multi-sequence parallel prediction and Bayesian optimization parameter tuning.Finally,the prediction values are integrated and superimposed to obtain the prediction output of the whole model,to achieve the goal of high-precision prediction of the original complex sequence data.The CEEMDAN-ConvLSTM hybrid model is verified by using the Google cluster workload data set.Experiment results show that the CEEMDAN-ConvLSTM hybrid model had a good prediction effect.Compared with the autoregressive differential moving average model(ARIMA),long short-term memory network(LSTM)and the convolutional long short-term memory(ConvLSTM),the Root Mean Square Error(RMSE)increases by 30.9%,30.1%and 22.5%,respectively.
关 键 词:云计算 负载预测 卷积长时序神经网络(ConvLSTM) 模态分解技术 贝叶斯优化
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7