检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王清宇 王海瑞[1] 朱贵富 孟顺建 WANG Qingyu;WANG Hairui;ZHU Guifu;MENG Shunjian(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500
出 处:《计算机科学》2023年第S01期787-792,共6页Computer Science
基 金:国家自然科学基金(61863016,61263023)。
摘 要:针对深度学习方法检测SQL注入时有标签数据不足容易导致模型过拟合的问题,提出了一种基于半监督学习的FlexUDA模型。首先对采集到的数据进行解码、泛化和分词等预处理,然后通过计算TF-IDF值对无标签数据进行增强,并将原始数据和增强后的数据使用TF-IDF和Word2Vec融合算法进行向量化,最后使用FlexUDA模型进行训练,并将训练好的模型与其他模型进行对比分析。实验结果表明,FlexUDA模型仅使用1000条有标签数据和100000条无标签数据进行训练,就获得了99.42%的准确率和99.23%的召回率,相比其他有监督训练模型,表现出了更好的泛化性能,可以很好地解决SQL注入检测中有标签数据不足导致的过拟合问题。FlexUDA model based on semi-supervised learning is proposed to solve the problem that insufficient labeled data is easy to cause model over fitting when deep learning method detects SQL injection.Firstly,the collected data are preprocessed by decoding,generalization and word segmentation,and then the unlabeled data are augmented by calculating the TF-IDF value.The original data and augmented data are vectorized using TF-IDF and Word2Vec fusion algorithm.Finally,the FlexUDA model is used for training,and the trained model is compared with other models.Experimental results show the FlexUDA model only uses 1000 labeled data and 100000 unlabeled data for training,and achieves 99.42%accuracy and 99.23%recall.Compared with other supervised training models,it shows better generalization performance,and can well solve the over fitting problem caused by insufficient labeled data in SQL injection detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.45