联合深度学习和专家先验特征的信号调制识别  被引量:3

Signal Modulation Recognition Based on Joint Deep Learning and Expert Prior Features

在线阅读下载全文

作  者:章昕亮 李天昀[1] 龚佩 刘人玮 李恺 ZHANG Xinliang;LI Tianyun;GONG Pei;LIU Renwei;LI Kai(Information Engineering University,Zhengzhou 450001,China)

机构地区:[1]信息工程大学,河南郑州450001

出  处:《信息工程大学学报》2023年第2期129-134,共6页Journal of Information Engineering University

基  金:国家自然科学基金资助项目(61401511)。

摘  要:自动调制识别在智能信号分析中起着关键作用,目前研究方法主要有专家先验特征和深度学习。这两者存在各自的优劣势,但难以有效结合实现优势互补,因此提出一种联合深度学习和专家先验特征的信号调制识别算法,提高复杂信道干扰下多种调制类别信号的识别准确率。将设计的神经网络代替决策树的分类判决门限,并结合输入的专家先验特征实现分层分类。实验表明,该算法性能要优于现有方法,在多径衰落信道下也可以取得较高的识别准确率。Automatic modulation recognition plays a key role in intelligent signal analysis.At pres-ent,the research methods mainly include expert prior features and deep learning.Both of them have their own advantages and disadvantages,but it is difficult to effectively combine them to complement each other.Therefore,a signal modulation recognition method based on joint deep learning and ex-pert prior features is proposed to improve the recognition accuracy of multiple modulation signals un-der complex channel interference.The neural network is designed to replace the classification threshold of decision tree to realize hierarchical classification,combining expert prior features input.The experiment shows that the proposed method has better performance than the existing methods and can achieve high recognition accuracy in multipath fading channels.

关 键 词:自动调制识别 专家先验特征 深度学习 多径衰落 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象