无标度网络上异质性演化猎鹿博弈的研究  

Heterogeneous evolutionary stag-hunt game on scale-free network

在线阅读下载全文

作  者:邹易君 刘兴文[1] 龙勇[1] ZOU Yi-jun;LIU Xing-wen;LONG Yong(School of Electrical Engineering,Southwest Minzu University,Chengdu 610225,China)

机构地区:[1]西南民族大学电气工程学院,四川成都610225

出  处:《西南民族大学学报(自然科学版)》2023年第3期341-347,共7页Journal of Southwest Minzu University(Natural Science Edition)

基  金:国家自然科学基金项目(62073270);四川省教育厅创新团队项目(15TD0050);西南民族大学中央高校优秀学生培养工程项目(2021NYYXS72)。

摘  要:研究网络演化博弈往往假定个体具有同质性.猎鹿博弈中,同质性要求双方合作后平分所得收益,这使得演化过程理想化、简单化,也导致演化模型与现实情况相去甚远、所得结果缺乏实际价值和意义.因此,在无标度网络演化猎鹿博弈中引入收益分配异质性:在量化个体间异质性的基础上,对个体间合作所得收益采用新的分配方式;进一步采用期望驱动更新与从众更新组合策略更新规则,消除网络自身异质性对博弈结果的影响.结果表明,异质性收益分配方式能促进个体间的合作,相较于单一期望驱动更新规则或从众更新规则,组合策略更新规则更能促进个体间的合作.It is often assumed that the individuals are homogeneous when studying evolutionary games on the networks.In the stag-hunt game,homogeneity means that both players receive an equal portion of the payoff when they cooperate.The assumption of all players being homogeneous idealizes and simplifies the evolution process and is also far from being real,and thus the corresponding findings lack realistic relevance.Therefore,in this paper,the heterogeneity of payoff distribution was introduced in the stag-hunt evolutionary game on the scale-free network.On the basis of quantifying individual's heterogeneity,a new approach was adopted for the payoff distribution between individuals.Furthermore,a strategy updating rule combining aspiration-driven updating and conformity-driven updating was employed to eliminate the influence of network heterogeneity on game results.The results showed that the heterogeneous payoff distribution could promote cooperation.Compared with aspiration-driven updating rule or conformity-driven updating rule,combining strategy updating rule could significantly promote cooperation.

关 键 词:异质性 演化博弈 期望驱动更新 从众更新 

分 类 号:O225[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象