基于PSO-SLM算法的OTFS系统峰均比抑制  被引量:1

PAPR reduction in OTFS system based on PSO-SLM algorithm

在线阅读下载全文

作  者:白菊蓉 宋朝阳 兰琳 杜慧敏 BAI Jurong;SONG Zhaoyang;LAN Lin;DU Huimin(School of Electronic Engineering,Xi an University of Posts and Telecommunications,Xi an 710121,China)

机构地区:[1]西安邮电大学电子工程学院,陕西西安710121

出  处:《西安邮电大学学报》2023年第1期30-36,共7页Journal of Xi’an University of Posts and Telecommunications

摘  要:当正交时频空调制(Orthogonal Time-Frequency Space,OTFS)信号峰均比(Peak-to-Average Power Ratio,PAPR)超过高功率放大器的线性范围时,会产生非线性失真,降低数据传输性能。为提高SLM算法抑制OTFS信号PAPR的性能,提出基于粒子群优化算法(Particle Swarm Optimization,PSO)的选择性映射法(Selective Mapping,SLM)PSO-SLM。该方法使用PSO算法求得SLM算法中最优相位因子,并与时频信号点乘后经过海森堡变换求得时域信号,将时域信号发送至高功率放大器。仿真结果表明,PSO-SLM算法相对于传统算法具有更好的PAPR抑制性能。在互补累计函数为10-3时,PSO-SLM算法较传统SLM算法的PAPR降低了4.2 dB,并且不会对通信系统的误码率性能造成影响。所提出的算法提高了SLM算法对OTFS系统的PAPR抑制性能。When the OTFS signal peak-to-average power ratio(PAPR)exceeds the linear range of high power amplifiers(HPA),nonlinear distortion occurs and data transmission performance is reduced.In order to improve the PAPR reduction performance of the SLM method for the OTFS signal,PSO-SLM algorithm is proposed,which adopted the PSO method to find the optimal phase factor,and dot multiplied it by the time-frequency domain signal,to obtain the time domain signal by the Heisenberg transformation.This time domain signal is transmitted to the HPA.Simulation results show that the PSO-SLM algorithm has better PAPR reduction performance than the traditional algorithms.Compared with the traditional SLM algorithm,when the complementary cumulative function is 10-3,the PSO-SLM reduced the PAPR 4.2 dB more than the SLM method,and it does not affect the bit error rate performance of the system.The proposed PSO-SLM algorithm improved the PAPR reduction performance of the SLM method in the OTFS system.

关 键 词:峰均比抑制 正交时频空调制 延迟多普勒域 选择性映射法 粒子群算法 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象