检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Salah MECHERI
出 处:《Acta Mathematica Sinica,English Series》2023年第6期1147-1152,共6页数学学报(英文版)
摘 要:A bounded linear operator T on a complex Hilbert space H is called n-normal if T^(*)T^(n)=T^(n)T^(*).By Fuglede’s theorem T is n-normal if and only if T^(n)is normal.Let k,n∈N.Then a bounded linear operator T is said to be of typeⅠk-quasi-n-normal if T^(*k){T^(*)T^(n)-T^(n)T^(*)}T^(k)=0,and T is said to be of typeⅡk-quasi-n-normal if T^(*k){T^(*n)T^(n)-T^(n)T^(*n)}T^(k)=0.1-quasi-n-normal is called quasi-n-normal.We shall show that(1)typeⅠquasi-2-normal and typeⅡquasi-2-normal are different classes;(2)the intersection of the class of typeⅠquasi-2-normal and the class of typeⅡquasi-2-normal is equal to the class of 2-normal.We also give some examples of type I k-quasi-n-normal and typeⅡk-quasi-n-normal.We also show that Weyl’s theorem holds for this class of operators and every k-quasi-n-normal operator has a non trivial invariant subspace.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33