基于XGBoost的模拟集成电路测试参数优化方法  被引量:2

Test parameter optimization method for analog IC testing by XGBoost

在线阅读下载全文

作  者:肖寅东[1] 曾宇通 刘科[1] 胡聪[2] Xiao Yindong;Zeng Yutong;Liu Ke;Hu Cong(School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China;Guangxi Key Laboratory of Automatic Testing Technology and Instruments,Guilin University of Electronic Technology,Guilin 541004,China)

机构地区:[1]电子科技大学自动化工程学院,成都611731 [2]桂林电子科技大学广西自动检测技术与仪器重点实验室,桂林541004

出  处:《电子测量与仪器学报》2023年第4期61-68,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家自然科学基金(61871089);广西自动检测技术与仪器重点实验室开放基金(YQ201202)项目资助。

摘  要:随着集成电路的规模不断扩大,其测试成本随测试时间的增长而不断提高,如何优化测试参数是一个重要课题。模拟集成电路测试中,测试参数间存在非线性隐式依赖,使得直接揭示其相互关系并进行测试方法优化非常困难。本文基于XGBoost决策树模型提出了一种优化模拟集成电路测试参数数目的方法,该方法探索不同测试参数间的相互表征能力,在测试序列中依次删减可被良好表达的测试参数,在保证一定逃逸率的条件下达到缩短测试时间的目的。本文讨论了故障数目、特征重要性和SHAP值3种评估测试参数间表征能力的指标,并对两类模拟集成电路测试数据集进行了实验,结果表明故障数目是一种优秀的评估指标,可在测试逃逸率不超过20 PPM的条件下实现25%的测试参数优化。As the scale of integrated circuits continues to increase and their test cost increases with test time,the optimization of the test terms is an important topic.The existence of nonlinear implicit dependencies among test parameters in analog integrated circuit testing makes it very difficult to directly reveal their interrelationships and perform test method optimization.In this paper,we propose a method to optimize the number of test parameters of analog integrated circuits based on the XGBoost decision tree model,which explores the mutual characterization ability among different test parameters and sequentially deletes the test parameters that can be well expressed in the test sequence to achieve the purpose of shortening the test time under the condition of ensuring a certain escape rate.The paper discusses three metrics to evaluate the inter-representation capability of test parameters,such as the number of faults,feature importance and SHAP value,and conducts experiments on two types of analog IC test datasets.The results show that the number of faults is an excellent evaluation metric that can achieve 25%test parameter optimization under the condition that the test escape rate does not exceed 20 PPM.

关 键 词:机器学习 XGBoost 集成电路测试 测试成本 测试逃逸 

分 类 号:TN98[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象