LOCAL STRUCTURE-PRESERVING ALGORITHMS FOR THE KLEIN-GORDON-ZAKHAROV EQUATION  被引量:1

在线阅读下载全文

作  者:汪佳玲 周政婷 王雨顺 Jialing WANG;Zhengting ZHOU;Yushun WANG(School of Mathematics and Statistics,Nanjing University of Information Science&Technology,Nanjing,210044,China;Jiangsu Key Laboratory of NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing,210023,China)

机构地区:[1]School of Mathematics and Statistics,Nanjing University of Information Science&Technology,Nanjing,210044,China [2]Jiangsu Key Laboratory of NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing,210023,China

出  处:《Acta Mathematica Scientia》2023年第3期1211-1238,共28页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(11801277,11771213,12171245)。

摘  要:In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well.

关 键 词:Klein-Gordon-Zakharov(KGZ)equation local preservation law local momentum-preserving algorithms multi-symplectic algorithms local energy-preserving algorithms 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象