SOME RESULTS ON BUNDLE SYSTEMS FOR A COUNTABLE DISCRETE AMENABLE GROUP ACTION  

在线阅读下载全文

作  者:潘娟 周云华 Juan PAN;Yunhua ZHOU(School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing,400067,China;College of Mathematics and Statistics,Chongqing University,Chongqing,401331,China)

机构地区:[1]School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing,400067,China [2]College of Mathematics and Statistics,Chongqing University,Chongqing,401331,China

出  处:《Acta Mathematica Scientia》2023年第3期1382-1402,共21页数学物理学报(B辑英文版)

基  金:supported by the Natural Science Foundation of China(11871120, 12071082);the Natural Science Foundation of Chongqing (cstc2021jcyj-msxm X0299)。

摘  要:We consider the style number, independence number and entropy for a frame bundle dynamical system. The base system of which is a countable discrete amenable group action on a compact metric space. We obtain the existence of cover measures, an ergodic theorem about mean linear independence and the style number, and a variational principle for style numbers and independence numbers. We also study the relationship between the entropy of base systems and that of their bundle systems.

关 键 词:mean linear independence style number independence number ENTROPY 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象