基于SSA-VMD的爆破振动信号趋势项去除方法  被引量:10

Trend removal method of blasting vibration signal based on SSA-VMD

在线阅读下载全文

作  者:莫宏毅 徐振洋 刘鑫 张久洋 姜厦航 MO Hongyi;XU Zhenyang;LIU Xin;ZHANG Jiuyang;JIANG Xiahang(College of Mining Engineering,Liaoning University of Science and Technology,Anshan 114051,China;Engineering Research Center of Green Mining of Metal Mineral Resources,Anshan 114051,China)

机构地区:[1]辽宁科技大学矿业工程学院,辽宁鞍山114051 [2]辽宁省金属矿产资源绿色开采工程研究中心,辽宁鞍山114051

出  处:《振动与冲击》2023年第11期304-312,330,共10页Journal of Vibration and Shock

基  金:“十三五”国家重点研发计划(2016YFC0801603);辽宁省教育厅重点项目(LJKZ0282)。

摘  要:针对爆破振动信号存在的趋势项干扰问题,提出一种改进变分模态分解(variational mode decomposition,VMD)的趋势项去除方法。该方法采用麻雀搜索算法(sparrow search algorithm,SSA)优化VMD参数,接着对信号进行VMD分解,得到一组模态分量(intrinsic modal function,IMF)。通过均值比法筛选出趋势项分量,对剩余分量重构得到去除趋势项的信号。经过仿真信号分析,SSA-VMD相较EEMD在均方根误差、相对范数和最大误差上分别降低了约73%、49%和82%,SSA-VMD对趋势项提取更为充分,识别趋势项的精度更高。同时,SSA-VMD对实测爆破振动信号进行分析,结果表明,该方法消除了爆破振动信号零点漂移现象,信号波形回归到基线中心,主频率趋于合理,提高了信号频谱分析的精度。Aiming at the interference of trend term in blasting vibration signal,an improved VMD trend term removal method was proposed.SSA was used to optimize VMD parameters,and the signal was decomposed to a set of IMF.The trend component was screened out by the method of mean ratio,Then the residual component was reconstructed to get the signal that was removed of the trend term.After simulation signal analysis,compared with EEMD,SSA-VMD reduces the root mean square error,relative norm and maximum error by about 73%,49%and 82%,respectively.SSA-VMD extracts trend items more fully and identifies trend items more accurately.At the same time,the measured blasting vibration signals were analyzed by SSA-VMD method.The results show that:the method eliminates the phenomenon of zero drift of blasting vibration signals,and the signal waveform returns to the center of baseline,main frequency tends to be reasonable,and the accuracy of signal spectrum analysis is improved.

关 键 词:爆破振动 麻雀算法(SSA) 变分模态分解(VMD) 趋势项 

分 类 号:TD235[矿业工程—矿井建设]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象