基于ArcGIS空间插值的干热岩温度预测研究  被引量:1

Prediction of Hot Dry Rock Temperature Based on ArcGIS Spatial Interpolation

在线阅读下载全文

作  者:饶俊 罗兵 丁海萍[1] 李中隆 RAO Jun;LUO Bing;DING Haiping;LI Zhonglong(Jiangxi Vocational and Technical College of Communications,Nanchang 330013,Jiangxi,China;Jiangxi Nuclear Industry Surveying and Mapping Institute Group Co.,Ltd.,Nanchang 330038,Jiangxi,China)

机构地区:[1]江西交通职业技术学院,江西南昌330013 [2]江西核工业测绘院集团有限公司,江西南昌330038

出  处:《能源与节能》2023年第6期14-16,50,共4页Energy and Energy Conservation

基  金:江西省教育厅科学技术研究项目(GJJ171287);江西省高等学校教学改革研究省级课题(JXJG-21-53-10)。

摘  要:克里格空间局部插值方法是地统计学的重要内容之一,根据不同研究对象的空间分布规律选定适合的变异函数。干热岩的空间数据分布既有随机性又有结构性,影响干热岩温度的因素有地质构造、放射性物质组成、地层活动等。研究利用克里格插值法估算地下空间无法测量的温度。实验结果表明,变异函数选取高斯模型的插值效果最好,而克里格插值法效果好于反距离权重法。在数据量有限的情况下,克里格插值法能有效计算出地层深部温度的分布情况。同时变异函数对插值计算的最终结果起到了决定性作用,实验样本点的选取也直接影响到插值计算的精度。Kriging spatial local interpolation method is one of the important contents of geostatistics,which selects suitable variation functions according to the spatial distribution rules of different research objects.The spatial data distribution of hot dry rocks has both randomness and structure,and the factors that affect the temperature of hot dry rocks include geological structure,radioactive material composition,and stratigraphic activity.In the study,Kriging interpolation method was used to estimate the temperature of underground space that cannot be measured.The experimental results show that the Gaussian model selected by the variation function has the best interpolation effect,and the Kriging interpolation effect is better than the inverse distance weighting method.In the case of limited data,Kriging interpolation method can effectively calculate the distribution of temperature in the deep stratum.At the same time,the variation function plays a decisive role in the final result of interpolation calculation,and the selection of experimental sample points also directly affects the accuracy of interpolation calculation.

关 键 词:地统计学 克里格 变异函数 干热岩 

分 类 号:P314[天文地球—固体地球物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象