检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常建涛[1] 乔子萱 孔宪光[1] 杨胜康 罗才文 CHANG Jiantao;QIAO Zixuan;KONG Xianguang;YANG Shengkang;LUO Caiwen(School of Mechano-Electronic Engineering,Xidian University,Xi'an 710071;Chengdu Zhongdian Jinjiang Information Industry Co.,Ltd.,Chengdu 610057)
机构地区:[1]西安电子科技大学机电工程学院,西安710071 [2]成都中电锦江信息产业有限公司,成都610057
出 处:《机械工程学报》2023年第6期294-308,共15页Journal of Mechanical Engineering
基 金:陕西省重点研发计划(2020ZDLGY07-08);陕西省科技重大专项(2019zdzx01-01-02);国家自然科学基金(51505357)资助项目。
摘 要:制造企业复杂产品零部件种类众多、加工和装配工序复杂,质量、工艺、设备等各类数据呈现多维度、多尺度、多噪声等特点,工期的关键影响特征提取难度大,预测精度难以保证。针对上述问题,提出一种多维非线性特征重构与融合的复杂产品工期预测方法,首先提出基于集成堆栈式自编码器的多维非线性特征重构与融合方法并构建相应模型,建立特征间的复杂关联耦合关系,形成工期关键因素特征池;基于深度学习算法构建多维非线性重构与融合的复杂产品工期预测模型,实现复杂产品工期的准确预测。选取某企业断路器和3D打印产品为对象进行工期预测的应用验证和对比分析,本方法的均方根误差平均值为1.28,平均绝对百分比误差平均值为3.01%,与未进行特征重构融合的方法,以及支持向量机、神经网络等方法相比,在精度方面均有提升,方均根误差至少降低了约10.87%,平均绝对百分比误差至少降低了约7.74%,证明所提方法的有效性和实用性。There are so many species of components for complicated products in manufacturing enterprise,which has complicated machining and assembly processes.And the quality,process,equipment and other types of data has multi-dimensional,multi-scale,multi-noise characteristics,which makes it difficult to accurately predict the duration.To address the issues mentioned above,one kind of complicated product duration prediction method based on multi-dimensional nonlinear feature reconstruction and fusion is proposed.First,multi-dimensional nonlinear feature reconstruction and fusion using integrated Stacked Auto Encoder is performed and the corresponding model is constructed,and a complicated correlation coupling connection between features is built to provide a feature pool comprising critical duration factors.Second,complicated product duration prediction model based on multi-dimensional nonlinear feature reconstruction is built to accomplish the complicated product duration prediction.Finally,the proposed model is applied in enterprises to predict the circuit breakers and 3D printed products’duration.The mean root mean square error of this method reached 1.28,and the mean absolute percentage error reached 3.01%,which is higher than the accuracy of the method without feature reconstruction and fusion,support vector machine,neural network,and other methods.The root mean square error decreased by at least 10.87%,the mean absolute percentage error decreased by at least 7.74%,demonstrating the usefulness and applicability of this method.
关 键 词:特征重构 特征融合 工期预测 深度神经网络 集成堆栈式自编码器
分 类 号:TH166[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.185.100