检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏小栋 孙超[1] 刘波 霍为炜 任强 孙逢春 WEI Xiaodong;SUN Chao;LIU Bo;HUO Weiwei;REN Qiang;SUN Fengchun(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081;College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082;Mechanical Electrical Engineering School,Beijing Information Science&Technology University,Beijing 100192;GAC Automotive Research&Development Center,Guangzhou 511434)
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]湖南大学机械与运载工程学院,长沙410082 [3]北京信息科技大学机电工程学院,北京100192 [4]广州汽车集团股份有限公司汽车工程研究院,广州511434
出 处:《机械工程学报》2023年第8期204-212,共9页Journal of Mechanical Engineering
基 金:国家自然科学基金(U1964206);广东省重点领域研发计划(2019B090909001)资助项目。
摘 要:随着物联网、云计算、大数据等新技术的快速发展,从交通行为和路网系统的角度进行车辆能量优化迎来了新的契机。针对燃料电池汽车通过多个信号灯的场景,提出一种基于静态氢耗图的车速与能量的联合优化方法。结合燃料电池汽车的动力系统结构,利用动态规划(Dynamic programming,DP)对车辆的耗氢量进行离线计算,得到车辆在不同速度和加速度下的静态氢耗图;基于静态氢耗图和交通信号灯配时信息,借助DP算法生成最优车速轨迹;采用交替方向乘子法(Alternating direction method of multipliers,ADMM)来解决能量管理问题,并通过循环检测策略约束燃料电池系统功率变化率。仿真结果表明,车辆最优速度轨迹和能量管理的联合优化计算具备实时性潜力。该方法的优化结果与DP离线计算的最优节能性能仅差1%左右,并且比基于ADMM的能量管理策略下的改进智能驾驶员模型(Intelligent driving model,IDM)的节氢量高17%以上。With the rapid development of new technologies such as the internet of things,cloud computing,and big data,vehicle energy optimization from the perspective of traffic behavior and road network systems has ushered in new opportunities.Aiming at the scene of fuel cell vehicles passing through multiple signal lights,a co-optimization method of vehicle speed and energy based on a static hydrogen consumption map is proposed.Combined with the powertrain structure of the fuel cell vehicle,the hydrogen consumption of the vehicle is calculated offline by dynamic programming(DP),and the static hydrogen consumption map of the vehicle at different speeds and accelerations is obtained.Based on the static hydrogen consumption map and traffic signal timing information,an optimal vehicle speed trajectory is generated with the help of the DP algorithm.The alternating direction method of multipliers(ADMM)is used to solve the energy management problem,and a cyclic constraint inspection strategy is used to constrain the fuel cell system power change rate.The simulation results show that the co-optimization calculation of the vehicle's optimal speed trajectory and energy management has real-time potential.The optimization result of this method is only about 1%difference from the optimal energy-saving performance of DP offline calculation,and it is more than 17%higher than the hydrogen saving of the improved intelligent driving model(IDM)under the energy management strategy based on ADMM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117