Weakly Supervised Abstractive Summarization with Enhancing Factual Consistency for Chinese Complaint Reports  

在线阅读下载全文

作  者:Ren Tao Chen Shuang 

机构地区:[1]Software College,Northeastern University,Shenyang,110000,China

出  处:《Computers, Materials & Continua》2023年第6期6201-6217,共17页计算机、材料和连续体(英文)

基  金:supported by National Natural Science Foundation of China(62276058,61902057,41774063);Fundamental Research Funds for the Central Universities(N2217003);Joint Fund of Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China(2020-KF-12-11).

摘  要:A large variety of complaint reports reflect subjective information expressed by citizens.A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary.Therefore,in this paper,a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words.Furthermore,it considers the importance of entity in complaint reports to ensure factual consistency of summary.Experimental results on the customer review datasets(Yelp and Amazon)and complaint report dataset(complaint reports of Shenyang in China)show that the proposed framework outperforms state-of-the-art approaches in ROUGE scores and human evaluation.It unveils the effectiveness of our approach to helping in dealing with complaint reports.

关 键 词:Automatic summarization abstractive summarization weakly supervised training entity recognition 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象