Parameter-Tuned Deep Learning-Enabled Activity Recognition for Disabled People  

在线阅读下载全文

作  者:Mesfer Al Duhayyim 

机构地区:[1]Department of Computer Science,College of Sciences and Humanities-Aflaj,Prince Sattam Bin Abdulaziz University,Al-Aflaj,16273,Saudi Arabia

出  处:《Computers, Materials & Continua》2023年第6期6287-6303,共17页计算机、材料和连续体(英文)

摘  要:Elderly or disabled people can be supported by a human activity recognition(HAR)system that monitors their activity intervenes and pat-terns in case of changes in their behaviors or critical events have occurred.An automated HAR could assist these persons to have a more indepen-dent life.Providing appropriate and accurate data regarding the activity is the most crucial computation task in the activity recognition system.With the fast development of neural networks,computing,and machine learning algorithms,HAR system based on wearable sensors has gained popularity in several areas,such as medical services,smart homes,improving human communication with computers,security systems,healthcare for the elderly,mechanization in industry,robot monitoring system,monitoring athlete train-ing,and rehabilitation systems.In this view,this study develops an improved pelican optimization with deep transfer learning enabled HAR(IPODTL-HAR)system for disabled persons.The major goal of the IPODTL-HAR method was recognizing the human activities for disabled person and improve the quality of living.The presented IPODTL-HAR model follows data pre-processing for improvising the quality of the data.Besides,EfficientNet model is applied to derive a useful set of feature vectors and the hyperparameters are adjusted by the use of Nadam optimizer.Finally,the IPO with deep belief network(DBN)model is utilized for the recognition and classification of human activities.The utilization of Nadam optimizer and IPO algorithm helps in effectually tuning the hyperparameters related to the EfficientNet and DBN models respectively.The experimental validation of the IPODTL-HAR method is tested using benchmark dataset.Extensive comparison study highlighted the betterment of the IPODTL-HAR model over recent state of art HAR approaches interms of different measures.

关 键 词:Human activity recognition disabled person artificial intelligence computer vision deep learning 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP181[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象