A Progressive Approach to Generic Object Detection: A Two-Stage Framework for Image Recognition  

在线阅读下载全文

作  者:Muhammad Aamir Ziaur Rahman Waheed Ahmed Abro Uzair Aslam Bhatti Zaheer Ahmed Dayo Muhammad Ishfaq 

机构地区:[1]College of Computer Science,Huanggang Normal University,Huanggang,Hubei,438000,China [2]FAST School of Computing,National University of Computer&Emerging Science(NUCES),Karachi Campus,Karachi,75030,Pakistan [3]School of Information and Communication Engineering,Hainan University,Haikou,68000,China

出  处:《Computers, Materials & Continua》2023年第6期6351-6373,共23页计算机、材料和连续体(英文)

基  金:funded by Huanggang Normal University,China,Self-type Project of 2021(No.30120210103)and 2022(No.2042021008).

摘  要:Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness.

关 键 词:Deep neural network deep learning features agglomerative clustering LOCALIZATIONS REFINEMENT region of interest(ROI) object detection 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象