检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wadhah Mohammed M.Aqlan Ghassan Ahmed Ali Khairan Rajab Adel Rajab Asadullah Shaikh Fekry Olayah Shehab Abdulhabib Saeed Alzaeemi Kim Gaik Tay Mohd Adib Omar Ernest Mangantig
机构地区:[1]School of Computer Sciences,Universiti Sains Malaysia,USM,11800,Penang,Malaysia [2]College of Computer Science and Information Systems,Najran University,Najran,61441,Saudi Arabia [3]Faculty of Electrical and Electronic Engineering,Universiti Tun Hussein Onn Malaysia,86400,Johor,Malaysia [4]IPPT,Universiti Sains Malaysia,USM,11800,Penang,Malaysia
出 处:《Computers, Materials & Continua》2023年第7期665-686,共22页计算机、材料和连续体(英文)
基 金:The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Collaboration Funding program grant coder NU/RC/SERC/11/5.
摘 要:Thalassemia syndrome is a genetic blood disorder induced by the reduction of normal hemoglobin production,resulting in a drop in the size of red blood cells.In severe forms,it can lead to death.This genetic disorder has posed a major burden on public health wherein patients with severe thalassemia need periodic therapy of iron chelation and blood transfusion for survival.Therefore,controlling thalassemia is extremely important and is made by promoting screening to the general population,particularly among thalassemia carriers.Today Twitter is one of the most influential social media platforms for sharing opinions and discussing different topics like people’s health conditions and major public health affairs.Exploring individuals’sentiments in these tweets helps the research centers to formulate strategies to promote thalassemia screening to the public.An effective Lexiconbased approach has been introduced in this study by highlighting a classifier called valence aware dictionary for sentiment reasoning(VADER).In this study applied twitter intelligence tool(TWINT),Natural Language Toolkit(NLTK),and VADER constitute the three main tools.VADER represents a gold-standard sentiment lexicon,which is basically tailored to attitudes that are communicated by using social media.The contribution of this study is to introduce an effective Lexicon-based approach by highlighting a classifier calledVADERto analyze the sentiment of the general population,particularly among thalassemia carriers on the social media platform Twitter.In this study,the results showed that the proposed approach achieved 0.829,0.816,and 0.818 regarding precision,recall,together with F-score,respectively.The tweets were crawled using the search keywords,“thalassemia screening,”thalassemia test,“and thalassemia diagnosis”.Finally,results showed that India and Pakistan ranked the highest in mentions in tweets by the public’s conversations on thalassemia screening with 181 and 164 tweets,respectively.
关 键 词:Social media platform TWITTER SCREENING THALASSEMIA lexicon-based VADER
分 类 号:R556.61[医药卫生—血液循环系统疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49