Tackling Faceless Killers: Toxic Comment Detection to Maintain a Healthy Internet Environment  

在线阅读下载全文

作  者:Semi Park Kyungho Lee 

机构地区:[1]School of Cybersecurity,Korea University,Seoul,02841,Korea

出  处:《Computers, Materials & Continua》2023年第7期813-826,共14页计算机、材料和连续体(英文)

摘  要:According to BBC News,online hate speech increased by 20%during the COVID-19 pandemic.Hate speech from anonymous users can result in psychological harm,including depression and trauma,and can even lead to suicide.Malicious online comments are increasingly becoming a social and cultural problem.It is therefore critical to detect such comments at the national level and detect malicious users at the corporate level.To achieve a healthy and safe Internet environment,studies should focus on institutional and technical topics.The detection of toxic comments can create a safe online environment.In this study,to detect malicious comments,we used approxi-mately 9,400 examples of hate speech from a Korean corpus of entertainment news comments.We developed toxic comment classification models using supervised learning algorithms,including decision trees,random forest,a support vector machine,and K-nearest neighbors.The proposed model uses random forests to classify toxic words,achieving an F1-score of 0.94.We analyzed the trained model using the permutation feature importance,which is an explanatory machine learning method.Our experimental results confirmed that the toxic comment classifier properly classified hate words used in Korea.Using this research methodology,the proposed method can create a healthy Internet environment by detecting malicious comments written in Korean.

关 键 词:Toxic comments toxic text classification machine learning healthy internet environment 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象