A Novel Multi-Stage Bispectral Deep Learning Method for Protein Family Classification  

在线阅读下载全文

作  者:Amjed Al Fahoum Ala’a Zyout Hiam Alquran Isam Abu-Qasmieh 

机构地区:[1]Biomedical Systems and Informatics Engineering Department,Hijjawi Faculty for Engineering Technology,Yarmouk University,Irbid,21163,Jordan

出  处:《Computers, Materials & Continua》2023年第7期1173-1193,共21页计算机、材料和连续体(英文)

摘  要:Complex proteins are needed for many biological activities.Folding amino acid chains reveals their properties and functions.They support healthy tissue structure,physiology,and homeostasis.Precision medicine and treatments require quantitative protein identification and function.Despite technical advances and protein sequence data exploration,bioinformatics’“basic structure”problem—the automatic deduction of a protein’s properties from its amino acid sequence—remains unsolved.Protein function inference from amino acid sequences is the main biological data challenge.This study analyzes whether raw sequencing can characterize biological facts.A massive corpus of protein sequences and the Globin-like superfamily’s related protein families generate a solid vector representation.A coding technique for each sequence in each family was devised using two representations to identify each amino acid precisely.A bispectral analysis converts encoded protein numerical sequences into images for better protein sequence and family discrimination.Training and validation employed 70%of the dataset,while 30%was used for testing.This paper examined the performance of multistage deep learning models for differentiating between sixteen protein families after encoding and representing each encoded sequence by a higher spectral representation image(Bispectrum).Cascading minimized false positive and negative cases in all phases.The initial stage focused on two classes(six groups and ten groups).The subsequent stages focused on the few classes almost accurately separated in the first stage and decreased the overlapping cases between families that appeared in single-stage deep learning classification.The single-stage technique had 64.2%+/-22.8%accuracy,63.3%+/-17.1%precision,and a 63.2%+/19.4%F1-score.The two-stage technique yielded 92.2%+/-4.9%accuracy,92.7%+/-7.0%precision,and a 92.3%+/-5.0%F1-score.This work provides balanced,reliable,and precise forecasts for all families in all measures.It ensured that the new model was

关 键 词:Globin-like superfamily numerical encoding bispectral analysis classification model deep convolutional neural network 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象