Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering  被引量:1

在线阅读下载全文

作  者:Hongwei Li Lilong Dou Shuaibing Li Yongqiang Kang Xingzu Yang Haiying Dong 

机构地区:[1]School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China [2]School of New Energy and Power Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China

出  处:《Chinese Journal of Electrical Engineering》2023年第1期129-141,共13页中国电气工程学报(英文)

摘  要:An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC.

关 键 词:On-load tap changer singular spectrum analysis Hilbert-Huang transform gray wolf optimization algorithm fuzzy C-means clustering 

分 类 号:TM7[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象