检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:DONG Chang-zhou LI Hao-xue 董昌州;李浩雪(School of Mathematics and Science,Hebei GEO University,Shijiazhuang 050031,China)
机构地区:[1]School of Mathematics and Science,Hebei GEO University,Shijiazhuang 050031,China
出 处:《Chinese Quarterly Journal of Mathematics》2023年第2期210-220,共11页数学季刊(英文版)
基 金:Supported by the Education Department Foundation of Hebei Province(Grant No.QN2015218).
摘 要:Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.
关 键 词:Matrix equations Potent matrix {P Q k+1}-reflexive(anti-reflexive) Canonical correlation decomposition Least squares solution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.31.119