机构地区:[1]Department of Anatomy and Histology&Embryology,Faculty of Basic Medical Science,Kunming Medical University,Kunming 650500,Yunnan,China [2]Key Laboratory of Chemistry in Ethnic Medicinal Resources&Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes,State Ethnic Affairs Commission&Ministry of Education,School of Ethnomedicine and Ethnopharmacy,Yunnan MinZu University,Kunming 650504,Yunnan,China [3]Endocrinology Department of Affiliated Hospital of Yunnan University,Kunming 650021,Yunnan,China [4]Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology,Chinese Academy of Sciences,Kunming 650223,Yunnan,China [5]Department of Dermatology,First Affiliated Hospital of Kunming Medical University,Kunming,650500,Yunnan,China
出 处:《Burns & Trauma》2022年第1期416-431,共16页烧伤与创伤(英文)
基 金:supported by grants from the National Natural Science Foundation of China(81760648,32060212 and 82160159);Yunnan Applied Basic Research Project Foundation(2019FB128);Project of Yunnan Applied Basic Research Project-Kunming Medical University Union Foundation(202101AY070001-006 and 2019FE001(-183));Program for Innovative Research Team in Ministry of Education of China(IRT17-R49);Science and Technology Leadership Talent Project in Yunnan China(2017HA010);Endocrine Clinical Medical Center of Yunnan Province(ZX2019-02-02);the Innovative Team of Precise Prevention and Treatment against Metabolic Diseases of Yunnan University,Scientific Research Fund Projects from the Department of Education of Yunnan Province(2021 J0205).
摘 要:Background:Amphibian-derived peptides exhibit considerable potential in the discovery and development of new therapeutic interventions for clinically challenging chronic skin wounds.MicroRNAs(miRNAs)are also considered promising targets for the development of effective therapies against skin wounds.However,further research in this field is anticipated.This study aims to identify and provide a new peptide drug candidate,as well as to explore the underlying miRNA mechanisms and possible miRNA drug target for skin wound healing.Methods:A combination of Edman degradation,mass spectrometry and cDNA cloning were adopted to determine the amino acid sequence of a peptide thatwas fractionated from the secretion of Odorrana andersonii frog skin using gel-filtration and reversed-phase high-performance liquid chromatography.The toxicity of the peptide was evaluated by Calcein-AM/propidium iodide(PI)double staining against human keratinocytes(HaCaT cells),hemolytic activity against mice blood cells and acute toxicity against mice.The stability of the peptide in plasma was also evaluated.The prohealing potency of the peptide was determined by MTS,scratch healing and a Transwell experiment against HaCaT cells,full-thickness injury wounds and scald wounds in the dorsal skin of mice.miRNA transcriptome sequencing analysis,enzyme-linked immunosorbent assay,real-time polymerase chain reaction and western blotting were performed to explore the molecular mechanisms.Results:A novel peptide homodimer(named OA-GL17d)that contains a disulfide bond between the 16th cysteine residue of the peptide monomer and the sequence‘GLFKWHPRCGEEQSMWT’was identified.Analysis showed that OA-GL17d exhibited no hemolytic activity or acute toxicity,but effectively promoted keratinocyte proliferation and migration and strongly stimulated the repair of full-thickness injury wounds and scald wounds in the dorsal skin of mice.Mechanistically,OA-GL17d decreased the level of miR-663a to increase the level of transforming growth factor-β1(TGF-β1)and activa
关 键 词:MicroRNA miR-663a Wound healing Peptide AMPHIBIAN Human keratinocytes OA-G17d Chronic wound Skin Transforming growth factor-β1 Smad
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...